/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #ifndef ULTRALCD_IMPL_HD44780_H #define ULTRALCD_IMPL_HD44780_H /** * Implementation of the LCD display routines for a Hitachi HD44780 display. * These are the most common LCD character displays. */ #include "utility.h" #include "duration_t.h" #if ENABLED(AUTO_BED_LEVELING_UBL) #include "ubl.h" #if ENABLED(ULTIPANEL) #define ULTRA_X_PIXELS_PER_CHAR 5 #define ULTRA_Y_PIXELS_PER_CHAR 8 #define ULTRA_COLUMNS_FOR_MESH_MAP 7 #define ULTRA_ROWS_FOR_MESH_MAP 4 #define N_USER_CHARS 8 #define TOP_LEFT _BV(0) #define TOP_RIGHT _BV(1) #define LOWER_LEFT _BV(2) #define LOWER_RIGHT _BV(3) #endif #endif extern volatile uint8_t buttons; //an extended version of the last checked buttons in a bit array. //////////////////////////////////// // Setup button and encode mappings for each panel (into 'buttons' variable // // This is just to map common functions (across different panels) onto the same // macro name. The mapping is independent of whether the button is directly connected or // via a shift/i2c register. #if ENABLED(ULTIPANEL) // // Setup other button mappings of each panel // #if ENABLED(LCD_I2C_VIKI) #define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C) // button and encoder bit positions within 'buttons' #define B_LE (BUTTON_LEFT << B_I2C_BTN_OFFSET) // The remaining normalized buttons are all read via I2C #define B_UP (BUTTON_UP << B_I2C_BTN_OFFSET) #define B_MI (BUTTON_SELECT << B_I2C_BTN_OFFSET) #define B_DW (BUTTON_DOWN << B_I2C_BTN_OFFSET) #define B_RI (BUTTON_RIGHT << B_I2C_BTN_OFFSET) #undef LCD_CLICKED #if BUTTON_EXISTS(ENC) // the pause/stop/restart button is connected to BTN_ENC when used #define B_ST (EN_C) // Map the pause/stop/resume button into its normalized functional name #define LCD_CLICKED (buttons & (B_MI|B_RI|B_ST)) // pause/stop button also acts as click until we implement proper pause/stop. #else #define LCD_CLICKED (buttons & (B_MI|B_RI)) #endif // I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update #define LCD_HAS_SLOW_BUTTONS #elif ENABLED(LCD_I2C_PANELOLU2) #if !BUTTON_EXISTS(ENC) // Use I2C if not directly connected to a pin #define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C) #define B_MI (PANELOLU2_ENCODER_C << B_I2C_BTN_OFFSET) // requires LiquidTWI2 library v1.2.3 or later #undef LCD_CLICKED #define LCD_CLICKED (buttons & B_MI) // I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update #define LCD_HAS_SLOW_BUTTONS #endif #elif DISABLED(NEWPANEL) // old style ULTIPANEL // Shift register bits correspond to buttons: #define BL_LE 7 // Left #define BL_UP 6 // Up #define BL_MI 5 // Middle #define BL_DW 4 // Down #define BL_RI 3 // Right #define BL_ST 2 // Red Button #define B_LE (_BV(BL_LE)) #define B_UP (_BV(BL_UP)) #define B_MI (_BV(BL_MI)) #define B_DW (_BV(BL_DW)) #define B_RI (_BV(BL_RI)) #define B_ST (_BV(BL_ST)) #define LCD_CLICKED (buttons & (B_MI|B_ST)) #endif #endif // ULTIPANEL //////////////////////////////////// // Create LCD class instance and chipset-specific information #if ENABLED(LCD_I2C_TYPE_PCF8575) // note: these are register mapped pins on the PCF8575 controller not Arduino pins #define LCD_I2C_PIN_BL 3 #define LCD_I2C_PIN_EN 2 #define LCD_I2C_PIN_RW 1 #define LCD_I2C_PIN_RS 0 #define LCD_I2C_PIN_D4 4 #define LCD_I2C_PIN_D5 5 #define LCD_I2C_PIN_D6 6 #define LCD_I2C_PIN_D7 7 #include #include #include #define LCD_CLASS LiquidCrystal_I2C LCD_CLASS lcd(LCD_I2C_ADDRESS, LCD_I2C_PIN_EN, LCD_I2C_PIN_RW, LCD_I2C_PIN_RS, LCD_I2C_PIN_D4, LCD_I2C_PIN_D5, LCD_I2C_PIN_D6, LCD_I2C_PIN_D7); #elif ENABLED(LCD_I2C_TYPE_MCP23017) //for the LED indicators (which maybe mapped to different things in lcd_implementation_update_indicators()) #define LED_A 0x04 //100 #define LED_B 0x02 //010 #define LED_C 0x01 //001 #define LCD_HAS_STATUS_INDICATORS #include #include #define LCD_CLASS LiquidTWI2 #if ENABLED(DETECT_DEVICE) LCD_CLASS lcd(LCD_I2C_ADDRESS, 1); #else LCD_CLASS lcd(LCD_I2C_ADDRESS); #endif #elif ENABLED(LCD_I2C_TYPE_MCP23008) #include #include #define LCD_CLASS LiquidTWI2 #if ENABLED(DETECT_DEVICE) LCD_CLASS lcd(LCD_I2C_ADDRESS, 1); #else LCD_CLASS lcd(LCD_I2C_ADDRESS); #endif #elif ENABLED(LCD_I2C_TYPE_PCA8574) #include #define LCD_CLASS LiquidCrystal_I2C LCD_CLASS lcd(LCD_I2C_ADDRESS, LCD_WIDTH, LCD_HEIGHT); // 2 wire Non-latching LCD SR from: // https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection #elif ENABLED(SR_LCD_2W_NL) extern "C" void __cxa_pure_virtual() { while (1); } #include #include #define LCD_CLASS LiquidCrystal_SR #if PIN_EXISTS(SR_STROBE) LCD_CLASS lcd(SR_DATA_PIN, SR_CLK_PIN, SR_STROBE_PIN); #else LCD_CLASS lcd(SR_DATA_PIN, SR_CLK_PIN); #endif #elif ENABLED(LCM1602) #include #include #include #define LCD_CLASS LiquidCrystal_I2C LCD_CLASS lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE); #else // Standard directly connected LCD implementations #include #define LCD_CLASS LiquidCrystal LCD_CLASS lcd(LCD_PINS_RS, LCD_PINS_ENABLE, LCD_PINS_D4, LCD_PINS_D5, LCD_PINS_D6, LCD_PINS_D7); //RS,Enable,D4,D5,D6,D7 #endif #include "utf_mapper.h" #if ENABLED(LCD_PROGRESS_BAR) static millis_t progress_bar_ms = 0; // Start millis of the current progress bar cycle #if PROGRESS_MSG_EXPIRE > 0 static millis_t expire_status_ms = 0; // millis at which to expire the status message #endif #define LCD_STR_PROGRESS "\x03\x04\x05" #endif #if ENABLED(LCD_HAS_STATUS_INDICATORS) static void lcd_implementation_update_indicators(); #endif static void createChar_P(const char c, const byte * const ptr) { byte temp[8]; for (uint8_t i = 0; i < 8; i++) temp[i] = pgm_read_byte(&ptr[i]); lcd.createChar(c, temp); } #define CHARSET_MENU 0 #define CHARSET_INFO 1 #define CHARSET_BOOT 2 static void lcd_set_custom_characters( #if ENABLED(LCD_PROGRESS_BAR) || ENABLED(SHOW_BOOTSCREEN) const uint8_t screen_charset=CHARSET_INFO #endif ) { // CHARSET_BOOT #if ENABLED(SHOW_BOOTSCREEN) const static PROGMEM byte corner[4][8] = { { B00000, B00000, B00000, B00000, B00001, B00010, B00100, B00100 }, { B00000, B00000, B00000, B11100, B11100, B01100, B00100, B00100 }, { B00100, B00010, B00001, B00000, B00000, B00000, B00000, B00000 }, { B00100, B01000, B10000, B00000, B00000, B00000, B00000, B00000 } }; #endif // SHOW_BOOTSCREEN // CHARSET_INFO const static PROGMEM byte bedTemp[8] = { B00000, B11111, B10101, B10001, B10101, B11111, B00000, B00000 }; const static PROGMEM byte degree[8] = { B01100, B10010, B10010, B01100, B00000, B00000, B00000, B00000 }; const static PROGMEM byte thermometer[8] = { B00100, B01010, B01010, B01010, B01010, B10001, B10001, B01110 }; const static PROGMEM byte uplevel[8] = { B00100, B01110, B11111, B00100, B11100, B00000, B00000, B00000 }; const static PROGMEM byte feedrate[8] = { B11100, B10000, B11000, B10111, B00101, B00110, B00101, B00000 }; const static PROGMEM byte clock[8] = { B00000, B01110, B10011, B10101, B10001, B01110, B00000, B00000 }; #if ENABLED(LCD_PROGRESS_BAR) // CHARSET_INFO const static PROGMEM byte progress[3][8] = { { B00000, B10000, B10000, B10000, B10000, B10000, B10000, B00000 }, { B00000, B10100, B10100, B10100, B10100, B10100, B10100, B00000 }, { B00000, B10101, B10101, B10101, B10101, B10101, B10101, B00000 } }; #endif // LCD_PROGRESS_BAR #if ENABLED(SDSUPPORT) // CHARSET_MENU const static PROGMEM byte refresh[8] = { B00000, B00110, B11001, B11000, B00011, B10011, B01100, B00000, }; const static PROGMEM byte folder[8] = { B00000, B11100, B11111, B10001, B10001, B11111, B00000, B00000 }; #endif // SDSUPPORT #if ENABLED(SHOW_BOOTSCREEN) // Set boot screen corner characters if (screen_charset == CHARSET_BOOT) { for (uint8_t i = 4; i--;) createChar_P(i, corner[i]); } else #endif { // Info Screen uses 5 special characters createChar_P(LCD_BEDTEMP_CHAR, bedTemp); createChar_P(LCD_DEGREE_CHAR, degree); createChar_P(LCD_STR_THERMOMETER[0], thermometer); createChar_P(LCD_FEEDRATE_CHAR, feedrate); createChar_P(LCD_CLOCK_CHAR, clock); #if ENABLED(LCD_PROGRESS_BAR) if (screen_charset == CHARSET_INFO) { // 3 Progress bar characters for info screen for (int16_t i = 3; i--;) createChar_P(LCD_STR_PROGRESS[i], progress[i]); } else #endif { createChar_P(LCD_UPLEVEL_CHAR, uplevel); #if ENABLED(SDSUPPORT) // SD Card sub-menu special characters createChar_P(LCD_STR_REFRESH[0], refresh); createChar_P(LCD_STR_FOLDER[0], folder); #endif } } } static void lcd_implementation_init( #if ENABLED(LCD_PROGRESS_BAR) const uint8_t screen_charset=CHARSET_INFO #endif ) { #if ENABLED(LCD_I2C_TYPE_PCF8575) lcd.begin(LCD_WIDTH, LCD_HEIGHT); #ifdef LCD_I2C_PIN_BL lcd.setBacklightPin(LCD_I2C_PIN_BL, POSITIVE); lcd.setBacklight(HIGH); #endif #elif ENABLED(LCD_I2C_TYPE_MCP23017) lcd.setMCPType(LTI_TYPE_MCP23017); lcd.begin(LCD_WIDTH, LCD_HEIGHT); lcd_implementation_update_indicators(); #elif ENABLED(LCD_I2C_TYPE_MCP23008) lcd.setMCPType(LTI_TYPE_MCP23008); lcd.begin(LCD_WIDTH, LCD_HEIGHT); #elif ENABLED(LCD_I2C_TYPE_PCA8574) lcd.init(); lcd.backlight(); #else lcd.begin(LCD_WIDTH, LCD_HEIGHT); #endif lcd_set_custom_characters( #if ENABLED(LCD_PROGRESS_BAR) screen_charset #endif ); lcd.clear(); } void lcd_implementation_clear() { lcd.clear(); } void lcd_print(const char c) { charset_mapper(c); } void lcd_print(const char *str) { while (*str) lcd.print(*str++); } void lcd_printPGM(const char *str) { while (const char c = pgm_read_byte(str)) lcd.print(c), ++str; } void lcd_print_utf(const char *str, uint8_t n=LCD_WIDTH) { char c; while (n && (c = *str)) n -= charset_mapper(c), ++str; } void lcd_printPGM_utf(const char *str, uint8_t n=LCD_WIDTH) { char c; while (n && (c = pgm_read_byte(str))) n -= charset_mapper(c), ++str; } #if ENABLED(SHOW_BOOTSCREEN) void lcd_erase_line(const int16_t line) { lcd.setCursor(0, line); for (uint8_t i = LCD_WIDTH + 1; --i;) lcd.write(' '); } // Scroll the PSTR 'text' in a 'len' wide field for 'time' milliseconds at position col,line void lcd_scroll(const int16_t col, const int16_t line, const char* const text, const int16_t len, const int16_t time) { uint8_t slen = utf8_strlen_P(text); if (slen < len) { // Fits into, lcd.setCursor(col, line); lcd_printPGM_utf(text, len); while (slen < len) { lcd.write(' '); ++slen; } safe_delay(time); } else { const char* p = text; int dly = time / MAX(slen, 1); for (uint8_t i = 0; i <= slen; i++) { // Go to the correct place lcd.setCursor(col, line); // Print the text lcd_printPGM_utf(p, len); // Fill with spaces uint8_t ix = slen - i; while (ix < len) { lcd.write(' '); ++ix; } // Delay safe_delay(dly); // Advance to the next UTF8 valid position p++; while (!START_OF_UTF8_CHAR(pgm_read_byte(p))) p++; } } } static void logo_lines(const char* const extra) { int16_t indent = (LCD_WIDTH - 8 - utf8_strlen_P(extra)) / 2; lcd.setCursor(indent, 0); lcd.print('\x00'); lcd_printPGM(PSTR( "------" )); lcd.write('\x01'); lcd.setCursor(indent, 1); lcd_printPGM(PSTR("|Marlin|")); lcd_printPGM(extra); lcd.setCursor(indent, 2); lcd.write('\x02'); lcd_printPGM(PSTR( "------" )); lcd.write('\x03'); } void lcd_bootscreen() { lcd_set_custom_characters(CHARSET_BOOT); lcd.clear(); #define LCD_EXTRA_SPACE (LCD_WIDTH-8) #define CENTER_OR_SCROLL(STRING,DELAY) \ lcd_erase_line(3); \ if (strlen(STRING) <= LCD_WIDTH) { \ lcd.setCursor((LCD_WIDTH - utf8_strlen_P(PSTR(STRING))) / 2, 3); \ lcd_printPGM_utf(PSTR(STRING)); \ safe_delay(DELAY); \ } \ else { \ lcd_scroll(0, 3, PSTR(STRING), LCD_WIDTH, DELAY); \ } #ifdef STRING_SPLASH_LINE1 // // Show the Marlin logo with splash line 1 // if (LCD_EXTRA_SPACE >= strlen(STRING_SPLASH_LINE1) + 1) { // // Show the Marlin logo, splash line1, and splash line 2 // logo_lines(PSTR(" " STRING_SPLASH_LINE1)); #ifdef STRING_SPLASH_LINE2 CENTER_OR_SCROLL(STRING_SPLASH_LINE2, 2000); #else safe_delay(2000); #endif } else { // // Show the Marlin logo with splash line 1 // After a delay show splash line 2, if it exists // #ifdef STRING_SPLASH_LINE2 #define _SPLASH_WAIT_1 1500 #else #define _SPLASH_WAIT_1 2000 #endif logo_lines(PSTR("")); CENTER_OR_SCROLL(STRING_SPLASH_LINE1, _SPLASH_WAIT_1); #ifdef STRING_SPLASH_LINE2 CENTER_OR_SCROLL(STRING_SPLASH_LINE2, 1500); #endif } #elif defined(STRING_SPLASH_LINE2) // // Show splash line 2 only, alongside the logo if possible // if (LCD_EXTRA_SPACE >= strlen(STRING_SPLASH_LINE2) + 1) { logo_lines(PSTR(" " STRING_SPLASH_LINE2)); safe_delay(2000); } else { logo_lines(PSTR("")); CENTER_OR_SCROLL(STRING_SPLASH_LINE2, 2000); } #else // // Show only the Marlin logo // logo_lines(PSTR("")); safe_delay(2000); #endif lcd.clear(); safe_delay(100); lcd_set_custom_characters(); lcd.clear(); } #endif // SHOW_BOOTSCREEN void lcd_kill_screen() { lcd.setCursor(0, 0); lcd_print_utf(lcd_status_message); #if LCD_HEIGHT < 4 lcd.setCursor(0, 2); #else lcd.setCursor(0, 2); lcd_printPGM_utf(PSTR(MSG_HALTED)); lcd.setCursor(0, 3); #endif lcd_printPGM_utf(PSTR(MSG_PLEASE_RESET)); } // // Before homing, blink '123' <-> '???'. // Homed but unknown... '123' <-> ' '. // Homed and known, display constantly. // FORCE_INLINE void _draw_axis_value(const AxisEnum axis, const char *value, const bool blink) { lcd_print('X' + uint8_t(axis)); if (blink) lcd.print(value); else { if (!TEST(axis_homed, axis)) while (const char c = *value++) lcd_print(c <= '.' ? c : '?'); else { #if DISABLED(HOME_AFTER_DEACTIVATE) && DISABLED(DISABLE_REDUCED_ACCURACY_WARNING) if (!TEST(axis_known_position, axis)) lcd_printPGM(axis == Z_AXIS ? PSTR(" ") : PSTR(" ")); else #endif lcd.print(value); } } } FORCE_INLINE void _draw_heater_status(const int8_t heater, const char prefix, const bool blink) { #if HAS_HEATED_BED const bool isBed = heater < 0; const float t1 = (isBed ? thermalManager.degBed() : thermalManager.degHotend(heater)), t2 = (isBed ? thermalManager.degTargetBed() : thermalManager.degTargetHotend(heater)); #else const float t1 = thermalManager.degHotend(heater), t2 = thermalManager.degTargetHotend(heater); #endif if (prefix >= 0) lcd.print(prefix); lcd.print(itostr3(t1 + 0.5)); lcd.write('/'); #if !HEATER_IDLE_HANDLER UNUSED(blink); #else const bool is_idle = ( #if HAS_HEATED_BED isBed ? thermalManager.is_bed_idle() : #endif thermalManager.is_heater_idle(heater) ); if (!blink && is_idle) { lcd.write(' '); if (t2 >= 10) lcd.write(' '); if (t2 >= 100) lcd.write(' '); } else #endif lcd.print(itostr3left(t2 + 0.5)); if (prefix >= 0) { lcd.print((char)LCD_DEGREE_CHAR); lcd.write(' '); if (t2 < 10) lcd.write(' '); } } #if ENABLED(LCD_PROGRESS_BAR) inline void lcd_draw_progress_bar(const uint8_t percent) { const int16_t tix = (int16_t)(percent * (LCD_WIDTH) * 3) / 100, cel = tix / 3, rem = tix % 3; uint8_t i = LCD_WIDTH; char msg[LCD_WIDTH + 1], b = ' '; msg[LCD_WIDTH] = '\0'; while (i--) { if (i == cel - 1) b = LCD_STR_PROGRESS[2]; else if (i == cel && rem != 0) b = LCD_STR_PROGRESS[rem - 1]; msg[i] = b; } lcd.print(msg); } #endif // LCD_PROGRESS_BAR /** Possible status screens: 16x2 |000/000 B000/000| |0123456789012345| 16x4 |000/000 B000/000| |SD100% Z 000.00| |F100% T--:--| |0123456789012345| 20x2 |T000/000D B000/000D | |01234567890123456789| 20x4 |T000/000D B000/000D | |X 000 Y 000 Z 000.00| |F100% SD100% T--:--| |01234567890123456789| 20x4 |T000/000D B000/000D | |T000/000D Z 000.00| |F100% SD100% T--:--| |01234567890123456789| */ static void lcd_implementation_status_screen() { const bool blink = lcd_blink(); // // Line 1 // lcd.setCursor(0, 0); #if LCD_WIDTH < 20 // // Hotend 0 Temperature // _draw_heater_status(0, -1, blink); // // Hotend 1 or Bed Temperature // #if HOTENDS > 1 || HAS_HEATED_BED lcd.setCursor(8, 0); #if HOTENDS > 1 lcd.print((char)LCD_STR_THERMOMETER[0]); _draw_heater_status(1, -1, blink); #else lcd.print((char)LCD_BEDTEMP_CHAR); _draw_heater_status(-1, -1, blink); #endif #endif // HOTENDS > 1 || HAS_HEATED_BED #else // LCD_WIDTH >= 20 // // Hotend 0 Temperature // _draw_heater_status(0, LCD_STR_THERMOMETER[0], blink); // // Hotend 1 or Bed Temperature // #if HOTENDS > 1 || HAS_HEATED_BED lcd.setCursor(10, 0); #if HOTENDS > 1 _draw_heater_status(1, LCD_STR_THERMOMETER[0], blink); #else _draw_heater_status(-1, ( #if HAS_LEVELING planner.leveling_active && blink ? '_' : #endif LCD_BEDTEMP_CHAR ), blink); #endif #endif // HOTENDS > 1 || HAS_HEATED_BED #endif // LCD_WIDTH >= 20 // // Line 2 // #if LCD_HEIGHT > 2 #if LCD_WIDTH < 20 #if ENABLED(SDSUPPORT) lcd.setCursor(0, 2); lcd_printPGM(PSTR("SD")); if (IS_SD_PRINTING()) lcd.print(itostr3(card.percentDone())); else lcd_printPGM(PSTR("---")); lcd.write('%'); #endif // SDSUPPORT #else // LCD_WIDTH >= 20 lcd.setCursor(0, 1); // If the first line has two extruder temps, // show more temperatures on the next line #if HOTENDS > 2 || (HOTENDS > 1 && HAS_HEATED_BED) #if HOTENDS > 2 _draw_heater_status(2, LCD_STR_THERMOMETER[0], blink); lcd.setCursor(10, 1); #endif _draw_heater_status(-1, ( #if HAS_LEVELING planner.leveling_active && blink ? '_' : #endif LCD_BEDTEMP_CHAR ), blink); #else // HOTENDS <= 2 && (HOTENDS <= 1 || !HAS_HEATED_BED) _draw_axis_value(X_AXIS, ftostr4sign(LOGICAL_X_POSITION(current_position[X_AXIS])), blink); lcd.write(' '); _draw_axis_value(Y_AXIS, ftostr4sign(LOGICAL_Y_POSITION(current_position[Y_AXIS])), blink); #endif // HOTENDS <= 2 && (HOTENDS <= 1 || !HAS_HEATED_BED) #endif // LCD_WIDTH >= 20 lcd.setCursor(LCD_WIDTH - 8, 1); _draw_axis_value(Z_AXIS, ftostr52sp(LOGICAL_Z_POSITION(current_position[Z_AXIS])), blink); #if HAS_LEVELING && !HAS_HEATED_BED lcd.write(planner.leveling_active || blink ? '_' : ' '); #endif #endif // LCD_HEIGHT > 2 // // Line 3 // #if LCD_HEIGHT > 3 lcd.setCursor(0, 2); lcd.print((char)LCD_FEEDRATE_CHAR); lcd.print(itostr3(feedrate_percentage)); lcd.write('%'); #if LCD_WIDTH >= 20 && ENABLED(SDSUPPORT) lcd.setCursor(7, 2); lcd_printPGM(PSTR("SD")); if (IS_SD_PRINTING()) lcd.print(itostr3(card.percentDone())); else lcd_printPGM(PSTR("---")); lcd.write('%'); #endif // LCD_WIDTH >= 20 && SDSUPPORT char buffer[10]; duration_t elapsed = print_job_timer.duration(); uint8_t len = elapsed.toDigital(buffer); lcd.setCursor(LCD_WIDTH - len - 1, 2); lcd.print((char)LCD_CLOCK_CHAR); lcd_print(buffer); #endif // LCD_HEIGHT > 3 // // Last Line // Status Message (which may be a Progress Bar or Filament display) // lcd.setCursor(0, LCD_HEIGHT - 1); #if ENABLED(LCD_PROGRESS_BAR) // Draw the progress bar if the message has shown long enough // or if there is no message set. #if DISABLED(LCD_SET_PROGRESS_MANUALLY) const uint8_t progress_bar_percent = card.percentDone(); #endif if (progress_bar_percent > 2 && (ELAPSED(millis(), progress_bar_ms + PROGRESS_BAR_MSG_TIME) || !lcd_status_message[0])) return lcd_draw_progress_bar(progress_bar_percent); #elif ENABLED(FILAMENT_LCD_DISPLAY) && ENABLED(SDSUPPORT) // Show Filament Diameter and Volumetric Multiplier % // After allowing lcd_status_message to show for 5 seconds if (ELAPSED(millis(), previous_lcd_status_ms + 5000UL)) { lcd_printPGM(PSTR("Dia ")); lcd.print(ftostr12ns(filament_width_meas)); lcd_printPGM(PSTR(" V")); lcd.print(itostr3(100.0 * ( parser.volumetric_enabled ? planner.volumetric_area_nominal / planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] : planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] ) )); lcd.write('%'); return; } #endif // FILAMENT_LCD_DISPLAY && SDSUPPORT #if ENABLED(STATUS_MESSAGE_SCROLLING) static bool last_blink = false; // Get the UTF8 character count of the string uint8_t slen = utf8_strlen(lcd_status_message); // If the string fits into the LCD, just print it and do not scroll it if (slen <= LCD_WIDTH) { // The string isn't scrolling and may not fill the screen lcd_print_utf(lcd_status_message); // Fill the rest with spaces while (slen < LCD_WIDTH) { lcd.write(' '); ++slen; } } else { // String is larger than the available space in screen. // Get a pointer to the next valid UTF8 character const char *stat = lcd_status_message + status_scroll_offset; // Get the string remaining length const uint8_t rlen = utf8_strlen(stat); // If we have enough characters to display if (rlen >= LCD_WIDTH) { // The remaining string fills the screen - Print it lcd_print_utf(stat, LCD_WIDTH); } else { // The remaining string does not completely fill the screen lcd_print_utf(stat, LCD_WIDTH); // The string leaves space uint8_t chars = LCD_WIDTH - rlen; // Amount of space left in characters lcd.write('.'); // Always at 1+ spaces left, draw a dot if (--chars) { // Draw a second dot if there's space lcd.write('.'); if (--chars) lcd_print_utf(lcd_status_message, chars); // Print a second copy of the message } } if (last_blink != blink) { last_blink = blink; // Adjust by complete UTF8 characters if (status_scroll_offset < slen) { status_scroll_offset++; while (!START_OF_UTF8_CHAR(lcd_status_message[status_scroll_offset])) status_scroll_offset++; } else status_scroll_offset = 0; } } #else UNUSED(blink); // Get the UTF8 character count of the string uint8_t slen = utf8_strlen(lcd_status_message); // Just print the string to the LCD lcd_print_utf(lcd_status_message, LCD_WIDTH); // Fill the rest with spaces if there are missing spaces while (slen < LCD_WIDTH) { lcd.write(' '); ++slen; } #endif } #if ENABLED(ULTIPANEL) #if ENABLED(ADVANCED_PAUSE_FEATURE) static void lcd_implementation_hotend_status(const uint8_t row, const uint8_t extruder=active_extruder) { if (row < LCD_HEIGHT) { lcd.setCursor(LCD_WIDTH - 9, row); _draw_heater_status(extruder, LCD_STR_THERMOMETER[0], lcd_blink()); } } #endif // ADVANCED_PAUSE_FEATURE static void lcd_implementation_drawmenu_static(const uint8_t row, const char* pstr, const bool center=true, const bool invert=false, const char *valstr=NULL) { UNUSED(invert); char c; int8_t n = LCD_WIDTH; lcd.setCursor(0, row); if (center && !valstr) { int8_t pad = (LCD_WIDTH - utf8_strlen_P(pstr)) / 2; while (--pad >= 0) { lcd.write(' '); n--; } } while (n > 0 && (c = pgm_read_byte(pstr))) { n -= charset_mapper(c); pstr++; } if (valstr) while (n > 0 && (c = *valstr)) { n -= charset_mapper(c); valstr++; } while (n-- > 0) lcd.write(' '); } static void lcd_implementation_drawmenu_generic(const bool sel, const uint8_t row, const char* pstr, const char pre_char, const char post_char) { char c; uint8_t n = LCD_WIDTH - 2; lcd.setCursor(0, row); lcd.print(sel ? pre_char : ' '); while ((c = pgm_read_byte(pstr)) && n > 0) { n -= charset_mapper(c); pstr++; } while (n--) lcd.write(' '); lcd.print(post_char); } static void lcd_implementation_drawmenu_setting_edit_generic(const bool sel, const uint8_t row, const char* pstr, const char pre_char, const char* const data) { char c; uint8_t n = LCD_WIDTH - 2 - utf8_strlen(data); lcd.setCursor(0, row); lcd.print(sel ? pre_char : ' '); while ((c = pgm_read_byte(pstr)) && n > 0) { n -= charset_mapper(c); pstr++; } lcd.write(':'); while (n--) lcd.write(' '); lcd_print(data); } static void lcd_implementation_drawmenu_setting_edit_generic_P(const bool sel, const uint8_t row, const char* pstr, const char pre_char, const char* const data) { char c; uint8_t n = LCD_WIDTH - 2 - utf8_strlen_P(data); lcd.setCursor(0, row); lcd.print(sel ? pre_char : ' '); while ((c = pgm_read_byte(pstr)) && n > 0) { n -= charset_mapper(c); pstr++; } lcd.write(':'); while (n--) lcd.write(' '); lcd_printPGM(data); } #define DRAWMENU_SETTING_EDIT_GENERIC(_src) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', _src) #define DRAW_BOOL_SETTING(sel, row, pstr, data) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, '>', (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF)) void lcd_implementation_drawedit(const char* pstr, const char* const value=NULL) { lcd.setCursor(1, 1); lcd_printPGM_utf(pstr); if (value != NULL) { lcd.write(':'); const uint8_t valrow = (utf8_strlen_P(pstr) + 1 + utf8_strlen(value) + 1) > (LCD_WIDTH - 2) ? 2 : 1; // Value on the next row if it won't fit lcd.setCursor((LCD_WIDTH - 1) - (utf8_strlen(value) + 1), valrow); // Right-justified, padded by spaces lcd.write(' '); // overwrite char if value gets shorter lcd_print(value); } } #if ENABLED(SDSUPPORT) static void lcd_implementation_drawmenu_sd(const bool sel, const uint8_t row, const char* const pstr, CardReader& theCard, const uint8_t concat, const char post_char) { UNUSED(pstr); lcd.setCursor(0, row); lcd.print(sel ? '>' : ' '); uint8_t n = LCD_WIDTH - concat; const char *outstr = theCard.longest_filename(); if (theCard.longFilename[0]) { #if ENABLED(SCROLL_LONG_FILENAMES) if (sel) { uint8_t name_hash = row; for (uint8_t l = FILENAME_LENGTH; l--;) name_hash = ((name_hash << 1) | (name_hash >> 7)) ^ theCard.filename[l]; // rotate, xor if (filename_scroll_hash != name_hash) { // If the hash changed... filename_scroll_hash = name_hash; // Save the new hash filename_scroll_max = MAX(0, utf8_strlen(theCard.longFilename) - n); // Update the scroll limit filename_scroll_pos = 0; // Reset scroll to the start lcd_status_update_delay = 8; // Don't scroll right away } outstr += filename_scroll_pos; } #else theCard.longFilename[n] = '\0'; // cutoff at screen edge #endif } char c; while (n && (c = *outstr)) { n -= charset_mapper(c); ++outstr; } while (n) { --n; lcd.write(' '); } lcd.print(post_char); } static void lcd_implementation_drawmenu_sdfile(const bool sel, const uint8_t row, const char* pstr, CardReader& theCard) { lcd_implementation_drawmenu_sd(sel, row, pstr, theCard, 2, ' '); } static void lcd_implementation_drawmenu_sddirectory(const bool sel, const uint8_t row, const char* pstr, CardReader& theCard) { lcd_implementation_drawmenu_sd(sel, row, pstr, theCard, 2, LCD_STR_FOLDER[0]); } #endif // SDSUPPORT #define lcd_implementation_drawmenu_back(sel, row, pstr, dummy) lcd_implementation_drawmenu_generic(sel, row, pstr, LCD_UPLEVEL_CHAR, LCD_UPLEVEL_CHAR) #define lcd_implementation_drawmenu_submenu(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, '>', LCD_STR_ARROW_RIGHT[0]) #define lcd_implementation_drawmenu_gcode(sel, row, pstr, gcode) lcd_implementation_drawmenu_generic(sel, row, pstr, '>', ' ') #define lcd_implementation_drawmenu_function(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, '>', ' ') #if ENABLED(LCD_HAS_SLOW_BUTTONS) extern millis_t next_button_update_ms; static uint8_t lcd_implementation_read_slow_buttons() { #if ENABLED(LCD_I2C_TYPE_MCP23017) // Reading these buttons this is likely to be too slow to call inside interrupt context // so they are called during normal lcd_update uint8_t slow_bits = lcd.readButtons() << B_I2C_BTN_OFFSET; #if ENABLED(LCD_I2C_VIKI) if ((slow_bits & (B_MI | B_RI)) && PENDING(millis(), next_button_update_ms)) // LCD clicked slow_bits &= ~(B_MI | B_RI); // Disable LCD clicked buttons if screen is updated #endif // LCD_I2C_VIKI return slow_bits; #endif // LCD_I2C_TYPE_MCP23017 } #endif // LCD_HAS_SLOW_BUTTONS #if ENABLED(LCD_HAS_STATUS_INDICATORS) static void lcd_implementation_update_indicators() { // Set the LEDS - referred to as backlights by the LiquidTWI2 library static uint8_t ledsprev = 0; uint8_t leds = 0; #if HAS_HEATED_BED if (thermalManager.degTargetBed() > 0) leds |= LED_A; #endif if (thermalManager.degTargetHotend(0) > 0) leds |= LED_B; #if FAN_COUNT > 0 if (0 #if HAS_FAN0 || fanSpeeds[0] #endif #if HAS_FAN1 || fanSpeeds[1] #endif #if HAS_FAN2 || fanSpeeds[2] #endif ) leds |= LED_C; #endif // FAN_COUNT > 0 #if HOTENDS > 1 if (thermalManager.degTargetHotend(1) > 0) leds |= LED_C; #endif if (leds != ledsprev) { lcd.setBacklight(leds); ledsprev = leds; } } #endif // LCD_HAS_STATUS_INDICATORS #if ENABLED(AUTO_BED_LEVELING_UBL) /** Possible map screens: 16x2 |X000.00 Y000.00| |(00,00) Z00.000| 20x2 | X:000.00 Y:000.00 | | (00,00) Z:00.000 | 16x4 |+-------+(00,00)| || |X000.00| || |Y000.00| |+-------+Z00.000| 20x4 | +-------+ (00,00) | | | | X:000.00| | | | Y:000.00| | +-------+ Z:00.000| */ typedef struct { uint8_t custom_char_bits[ULTRA_Y_PIXELS_PER_CHAR]; } custom_char; typedef struct { uint8_t column, row; uint8_t y_pixel_offset, x_pixel_offset; uint8_t x_pixel_mask; } coordinate; void add_edges_to_custom_char(custom_char * const custom, coordinate * const ul, coordinate * const lr, coordinate * const brc, const uint8_t cell_location); FORCE_INLINE static void clear_custom_char(custom_char * const cc) { ZERO(cc->custom_char_bits); } /* // This debug routine should be deleted by anybody that sees it. It doesn't belong here // But I'm leaving it for now until we know the 20x4 Radar Map is working right. // We may need it again if any funny lines show up on the mesh points. void dump_custom_char(char *title, custom_char *c) { SERIAL_PROTOCOLLN(title); for (uint8_t j = 0; j < 8; j++) { for (uint8_t i = 7; i >= 0; i--) SERIAL_PROTOCOLCHAR(TEST(c->custom_char_bits[j], i) ? '1' : '0'); SERIAL_EOL(); } SERIAL_EOL(); } //*/ coordinate pixel_location(int16_t x, int16_t y) { coordinate ret_val; int16_t xp, yp, r, c; x++; y++; // +1 because lines on the left and top c = x / (ULTRA_X_PIXELS_PER_CHAR); r = y / (ULTRA_Y_PIXELS_PER_CHAR); ret_val.column = c; ret_val.row = r; xp = x - c * (ULTRA_X_PIXELS_PER_CHAR); // get the pixel offsets into the character cell xp = ULTRA_X_PIXELS_PER_CHAR - 1 - xp; // column within relevant character cell (0 on the right) yp = y - r * (ULTRA_Y_PIXELS_PER_CHAR); ret_val.x_pixel_mask = _BV(xp); ret_val.x_pixel_offset = xp; ret_val.y_pixel_offset = yp; return ret_val; } inline coordinate pixel_location(const uint8_t x, const uint8_t y) { return pixel_location((int16_t)x, (int16_t)y); } void lcd_implementation_ubl_plot(const uint8_t x, const uint8_t inverted_y) { #if LCD_WIDTH >= 20 #define _LCD_W_POS 12 #define _PLOT_X 1 #define _MAP_X 3 #define _LABEL(C,X,Y) lcd.setCursor(X, Y); lcd.print(C) #define _XLABEL(X,Y) _LABEL("X:",X,Y) #define _YLABEL(X,Y) _LABEL("Y:",X,Y) #define _ZLABEL(X,Y) _LABEL("Z:",X,Y) #else #define _LCD_W_POS 8 #define _PLOT_X 0 #define _MAP_X 1 #define _LABEL(X,Y,C) lcd.setCursor(X, Y); lcd.write(C) #define _XLABEL(X,Y) _LABEL('X',X,Y) #define _YLABEL(X,Y) _LABEL('Y',X,Y) #define _ZLABEL(X,Y) _LABEL('Z',X,Y) #endif #if LCD_HEIGHT <= 3 // 16x2 or 20x2 display /** * Show X and Y positions */ _XLABEL(_PLOT_X, 0); lcd.print(ftostr52(LOGICAL_X_POSITION(pgm_read_float(&ubl._mesh_index_to_xpos[x])))); _YLABEL(_LCD_W_POS, 0); lcd.print(ftostr52(LOGICAL_Y_POSITION(pgm_read_float(&ubl._mesh_index_to_ypos[inverted_y])))); lcd.setCursor(_PLOT_X, 0); #else // 16x4 or 20x4 display coordinate upper_left, lower_right, bottom_right_corner; custom_char new_char; uint8_t i, j, k, l, m, n, n_rows, n_cols, y, bottom_line, right_edge, x_map_pixels, y_map_pixels, pixels_per_x_mesh_pnt, pixels_per_y_mesh_pnt, suppress_x_offset = 0, suppress_y_offset = 0; y = GRID_MAX_POINTS_Y - inverted_y - 1; upper_left.column = 0; upper_left.row = 0; lower_right.column = 0; lower_right.row = 0; lcd_implementation_clear(); x_map_pixels = (ULTRA_X_PIXELS_PER_CHAR) * (ULTRA_COLUMNS_FOR_MESH_MAP) - 2; // minus 2 because we are drawing a box around the map y_map_pixels = (ULTRA_Y_PIXELS_PER_CHAR) * (ULTRA_ROWS_FOR_MESH_MAP) - 2; pixels_per_x_mesh_pnt = x_map_pixels / (GRID_MAX_POINTS_X); pixels_per_y_mesh_pnt = y_map_pixels / (GRID_MAX_POINTS_Y); if (pixels_per_x_mesh_pnt >= ULTRA_X_PIXELS_PER_CHAR) { // There are only 2 custom characters available, so the X pixels_per_x_mesh_pnt = ULTRA_X_PIXELS_PER_CHAR; // size of the mesh point needs to fit within them independent suppress_x_offset = 1; // of where the starting pixel is located. } if (pixels_per_y_mesh_pnt >= ULTRA_Y_PIXELS_PER_CHAR) { // There are only 2 custom characters available, so the Y pixels_per_y_mesh_pnt = ULTRA_Y_PIXELS_PER_CHAR; // size of the mesh point needs to fit within them independent suppress_y_offset = 1; // of where the starting pixel is located. } x_map_pixels = pixels_per_x_mesh_pnt * (GRID_MAX_POINTS_X); // now we have the right number of pixels to make both y_map_pixels = pixels_per_y_mesh_pnt * (GRID_MAX_POINTS_Y); // directions fit nicely right_edge = pixels_per_x_mesh_pnt * (GRID_MAX_POINTS_X) + 1; // find location of right edge within the character cell bottom_line= pixels_per_y_mesh_pnt * (GRID_MAX_POINTS_Y) + 1; // find location of bottome line within the character cell n_rows = bottom_line / (ULTRA_Y_PIXELS_PER_CHAR) + 1; n_cols = right_edge / (ULTRA_X_PIXELS_PER_CHAR) + 1; for (i = 0; i < n_cols; i++) { lcd.setCursor(i, 0); lcd.print((char)0x00); // top line of the box lcd.setCursor(i, n_rows - 1); lcd.write(0x01); // bottom line of the box } for (j = 0; j < n_rows; j++) { lcd.setCursor(0, j); lcd.write(0x02); // Left edge of the box lcd.setCursor(n_cols - 1, j); lcd.write(0x03); // right edge of the box } /** * If the entire 4th row is not in use, do not put vertical bars all the way down to the bottom of the display */ k = pixels_per_y_mesh_pnt * (GRID_MAX_POINTS_Y) + 2; l = (ULTRA_Y_PIXELS_PER_CHAR) * n_rows; if (l > k && l - k >= (ULTRA_Y_PIXELS_PER_CHAR) / 2) { lcd.setCursor(0, n_rows - 1); // left edge of the box lcd.write(' '); lcd.setCursor(n_cols - 1, n_rows - 1); // right edge of the box lcd.write(' '); } clear_custom_char(&new_char); new_char.custom_char_bits[0] = 0b11111U; // char #0 is used for the top line of the box lcd.createChar(0, (uint8_t*)&new_char); clear_custom_char(&new_char); k = (GRID_MAX_POINTS_Y) * pixels_per_y_mesh_pnt + 1; // row of pixels for the bottom box line l = k % (ULTRA_Y_PIXELS_PER_CHAR); // row within relevant character cell new_char.custom_char_bits[l] = 0b11111U; // char #1 is used for the bottom line of the box lcd.createChar(1, (uint8_t*)&new_char); clear_custom_char(&new_char); for (j = 0; j < ULTRA_Y_PIXELS_PER_CHAR; j++) new_char.custom_char_bits[j] = 0b10000U; // char #2 is used for the left edge of the box lcd.createChar(2, (uint8_t*)&new_char); clear_custom_char(&new_char); m = (GRID_MAX_POINTS_X) * pixels_per_x_mesh_pnt + 1; // Column of pixels for the right box line n = m % (ULTRA_X_PIXELS_PER_CHAR); // Column within relevant character cell i = ULTRA_X_PIXELS_PER_CHAR - 1 - n; // Column within relevant character cell (0 on the right) for (j = 0; j < ULTRA_Y_PIXELS_PER_CHAR; j++) new_char.custom_char_bits[j] = (uint8_t)_BV(i); // Char #3 is used for the right edge of the box lcd.createChar(3, (uint8_t*)&new_char); i = x * pixels_per_x_mesh_pnt - suppress_x_offset; j = y * pixels_per_y_mesh_pnt - suppress_y_offset; upper_left = pixel_location(i, j); k = (x + 1) * pixels_per_x_mesh_pnt - 1 - suppress_x_offset; l = (y + 1) * pixels_per_y_mesh_pnt - 1 - suppress_y_offset; lower_right = pixel_location(k, l); bottom_right_corner = pixel_location(x_map_pixels, y_map_pixels); /** * First, handle the simple case where everything is within a single character cell. * If part of the Mesh Plot is outside of this character cell, we will follow up * and deal with that next. */ //dump_custom_char("at entry:", &new_char); clear_custom_char(&new_char); const uint8_t ypix = MIN(upper_left.y_pixel_offset + pixels_per_y_mesh_pnt, ULTRA_Y_PIXELS_PER_CHAR); for (j = upper_left.y_pixel_offset; j < ypix; j++) { i = upper_left.x_pixel_mask; for (k = 0; k < pixels_per_x_mesh_pnt; k++) { new_char.custom_char_bits[j] |= i; i >>= 1; } } //dump_custom_char("after loops:", &new_char); add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, TOP_LEFT); //dump_custom_char("after add edges", &new_char); lcd.createChar(4, (uint8_t*)&new_char); lcd.setCursor(upper_left.column, upper_left.row); lcd.write(0x04); //dump_custom_char("after lcd update:", &new_char); /** * Next, check for two side by side character cells being used to display the Mesh Point * If found... do the right hand character cell next. */ if (upper_left.column == lower_right.column - 1) { l = upper_left.x_pixel_offset; clear_custom_char(&new_char); for (j = upper_left.y_pixel_offset; j < ypix; j++) { i = _BV(ULTRA_X_PIXELS_PER_CHAR - 1); // Fill in the left side of the right character cell for (k = 0; k < pixels_per_x_mesh_pnt - 1 - l; k++) { new_char.custom_char_bits[j] |= i; i >>= 1; } } add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, TOP_RIGHT); lcd.createChar(5, (uint8_t *) &new_char); lcd.setCursor(lower_right.column, upper_left.row); lcd.write(0x05); } /** * Next, check for two character cells stacked on top of each other being used to display the Mesh Point */ if (upper_left.row == lower_right.row - 1) { l = ULTRA_Y_PIXELS_PER_CHAR - upper_left.y_pixel_offset; // Number of pixel rows in top character cell k = pixels_per_y_mesh_pnt - l; // Number of pixel rows in bottom character cell clear_custom_char(&new_char); for (j = 0; j < k; j++) { i = upper_left.x_pixel_mask; for (m = 0; m < pixels_per_x_mesh_pnt; m++) { // Fill in the top side of the bottom character cell new_char.custom_char_bits[j] |= i; if (!(i >>= 1)) break; } } add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, LOWER_LEFT); lcd.createChar(6, (uint8_t *) &new_char); lcd.setCursor(upper_left.column, lower_right.row); lcd.write(0x06); } /** * Next, check for four character cells being used to display the Mesh Point. If that is * what is here, we work to fill in the character cell that is down one and to the right one * from the upper_left character cell. */ if (upper_left.column == lower_right.column - 1 && upper_left.row == lower_right.row - 1) { l = ULTRA_Y_PIXELS_PER_CHAR - upper_left.y_pixel_offset; // Number of pixel rows in top character cell k = pixels_per_y_mesh_pnt - l; // Number of pixel rows in bottom character cell clear_custom_char(&new_char); for (j = 0; j < k; j++) { l = upper_left.x_pixel_offset; i = _BV(ULTRA_X_PIXELS_PER_CHAR - 1); // Fill in the left side of the right character cell for (m = 0; m < pixels_per_x_mesh_pnt - 1 - l; m++) { // Fill in the top side of the bottom character cell new_char.custom_char_bits[j] |= i; i >>= 1; } } add_edges_to_custom_char(&new_char, &upper_left, &lower_right, &bottom_right_corner, LOWER_RIGHT); lcd.createChar(7, (uint8_t*)&new_char); lcd.setCursor(lower_right.column, lower_right.row); lcd.write(0x07); } #endif /** * Print plot position */ lcd.setCursor(_LCD_W_POS, 0); lcd.write('('); lcd.print(x); lcd.write(','); lcd.print(inverted_y); lcd.write(')'); #if LCD_HEIGHT <= 3 // 16x2 or 20x2 display /** * Print Z values */ _ZLABEL(_LCD_W_POS, 1); if (!isnan(ubl.z_values[x][inverted_y])) lcd.print(ftostr43sign(ubl.z_values[x][inverted_y])); else lcd_printPGM(PSTR(" -----")); #else // 16x4 or 20x4 display /** * Show all values at right of screen */ _XLABEL(_LCD_W_POS, 1); lcd.print(ftostr52(LOGICAL_X_POSITION(pgm_read_float(&ubl._mesh_index_to_xpos[x])))); _YLABEL(_LCD_W_POS, 2); lcd.print(ftostr52(LOGICAL_Y_POSITION(pgm_read_float(&ubl._mesh_index_to_ypos[inverted_y])))); /** * Show the location value */ _ZLABEL(_LCD_W_POS, 3); if (!isnan(ubl.z_values[x][inverted_y])) lcd.print(ftostr43sign(ubl.z_values[x][inverted_y])); else lcd_printPGM(PSTR(" -----")); #endif // LCD_HEIGHT > 3 } void add_edges_to_custom_char(custom_char * const custom, coordinate * const ul, coordinate * const lr, coordinate * const brc, uint8_t cell_location) { uint8_t i, k; int16_t n_rows = lr->row - ul->row + 1, n_cols = lr->column - ul->column + 1; /** * Check if Top line of box needs to be filled in */ if (ul->row == 0 && ((cell_location & TOP_LEFT) || (cell_location & TOP_RIGHT))) { // Only fill in the top line for the top character cells if (n_cols == 1) { if (ul->column != brc->column) custom->custom_char_bits[0] = 0xFF; // Single column in middle else for (i = brc->x_pixel_offset; i < ULTRA_X_PIXELS_PER_CHAR; i++) // Single column on right side SBI(custom->custom_char_bits[0], i); } else if ((cell_location & TOP_LEFT) || lr->column != brc->column) // Multiple column in the middle or with right cell in middle custom->custom_char_bits[0] = 0xFF; else for (i = brc->x_pixel_offset; i < ULTRA_X_PIXELS_PER_CHAR; i++) SBI(custom->custom_char_bits[0], i); } /** * Check if left line of box needs to be filled in */ if ((cell_location & TOP_LEFT) || (cell_location & LOWER_LEFT)) { if (ul->column == 0) { // Left column of characters on LCD Display k = ul->row == brc->row ? brc->y_pixel_offset : ULTRA_Y_PIXELS_PER_CHAR; // If it isn't the last row... do the full character cell for (i = 0; i < k; i++) SBI(custom->custom_char_bits[i], ULTRA_X_PIXELS_PER_CHAR - 1); } } /** * Check if bottom line of box needs to be filled in */ // Single row of mesh plot cells if (n_rows == 1 /* && (cell_location == TOP_LEFT || cell_location == TOP_RIGHT) */ && ul->row == brc->row) { if (n_cols == 1) // Single row, single column case k = ul->column == brc->column ? brc->x_pixel_mask : 0x01; else if (cell_location & TOP_RIGHT) // Single row, multiple column case k = lr->column == brc->column ? brc->x_pixel_mask : 0x01; else // Single row, left of multiple columns k = 0x01; while (k < _BV(ULTRA_X_PIXELS_PER_CHAR)) { custom->custom_char_bits[brc->y_pixel_offset] |= k; k <<= 1; } } // Double row of characters on LCD Display // And this is a bottom custom character if (n_rows == 2 && (cell_location == LOWER_LEFT || cell_location == LOWER_RIGHT) && lr->row == brc->row) { if (n_cols == 1) // Double row, single column case k = ul->column == brc->column ? brc->x_pixel_mask : 0x01; else if (cell_location & LOWER_RIGHT) // Double row, multiple column case k = lr->column == brc->column ? brc->x_pixel_mask : 0x01; else // Double row, left of multiple columns k = 0x01; while (k < _BV(ULTRA_X_PIXELS_PER_CHAR)) { custom->custom_char_bits[brc->y_pixel_offset] |= k; k <<= 1; } } /** * Check if right line of box needs to be filled in */ // Nothing to do if the lower right part of the mesh pnt isn't in the same column as the box line if (lr->column == brc->column) { // This mesh point is in the same character cell as the right box line if (ul->column == brc->column || (cell_location & TOP_RIGHT) || (cell_location & LOWER_RIGHT)) { // If not the last row... do the full character cell k = ul->row == brc->row ? brc->y_pixel_offset : ULTRA_Y_PIXELS_PER_CHAR; for (i = 0; i < k; i++) custom->custom_char_bits[i] |= brc->x_pixel_mask; } } } #endif // AUTO_BED_LEVELING_UBL #endif // ULTIPANEL #endif // ULTRALCD_IMPL_HD44780_H