
AN1233
USB Printer Class on an Embedded Host
INTRODUCTION
Typical embedded applications are rather restricted in
how they can present data to a user. Limited amounts
of data can be displayed on an LCD or a graphical dis-
play, but large amounts of data are more problematical.
Often, data is transferred via an electrical interface or
via electronic storage media, such as a thumb drive, for
further examination, but it can be handy to obtain an
immediate snapshot of the data. The USB Printer
Class, used on one of Microchip’s microcontrollers with
the USB OTG peripheral, allows an embedded applica-
tion to utilize a USB printer to provide hardcopy output
for quick review and possible archival.

Point-of-Sale (POS) printers, sometimes referred to as
receipt printers or label printers, can also be very useful
in the field. Their small size, often coupled with mobile,
battery-powered operation, allows them to be used in
locations that are not suitable for a full sheet printer, or
even installed in the end product. They also offer extra
benefits, including easy bar code generation. This USB
Printer Class implementation also offers the ability to
utilize these printers.

In this document, the term “full sheet printer” will be
used for printers that typically print on standard,
8.5”x11” paper, and the term “POS printer” will be used
for Point-of-Sale printers.

USB PRINTER CLASS
The “USB Device Class Definition for Printing Devices”
specification, available from the USB Implementers
Forum, defines the configuration, interface and
endpoint descriptors, as well as the communications
protocol used to communicate with a USB printer. It
does not define the actual commands used to control
the printers.

The USB Printer Class, like all other USB classes,
utilizes Endpoint 0 for control transfers to and from the
host. In addition, the Printer Class uses one Bulk OUT
endpoint to send data to the printer, and sometimes
one Bulk IN endpoint for status and other data received
from the printer.

The class, subclass and protocol designators for a
printing device are not contained in the bDeviceClass,
bDeviceSubClass and bDeviceProtocol fields of the
device descriptor. Instead, these fields are all set to
0x00, and the designators are specified in the
bInterfaceClass (0x07), bInterfaceSubClass (0x01) and
bInterfaceProtocol fields of the interface descriptor.
Printers support three possible interface protocols, with
only one enabled at any given time:

• Unidirectional interface (0x01): This interface
supports only the sending of data to the printer via
a Bulk OUT endpoint.

• Bidirectional interface (0x02): This interface
supports sending data to the printer via the Bulk
OUT endpoint, and receiving status and other
information from the printer via the Bulk IN
endpoint.

• IEEE 1284.4 compatible bidirectional interface
(0x03): This interface supports sending data to
the printer via the Bulk OUT endpoint, and receiv-
ing status and other information from the printer
via the Bulk IN endpoint. It also specifies that the
data will be transmitted to and from the device
using the 1284.4 protocol.

Some printing devices indicate custom driver support in
their interface descriptors rather than Printer Class
support, but utilize the same basic Bulk OUT communi-
cation method. The USB Printer Client Driver
implementation allows an application to utilize the
same interface, with minor limitations, described below.

Author: Kim Otten
Microchip Technology Inc.
© 2008 Microchip Technology Inc. DS01233A-page 1

AN1233
CLASS-SPECIFIC REQUESTS
The USB Printer Class specifies three class-specific
requests. These requests are described in Table 1.

TABLE 1: PRINTER CLASS-SPECIFIC REQUEST

Get Device ID
This request returns a device ID string that is compatible
with IEEE 1284. The first two bytes are the length of the
string, including the two length bytes, in big endian
format. The string is comprised of a series of keys and
values in the form:

key: value[, value];

The keys are case-sensitive. At a minimum, the following
keys must be provided by the printing device:

• MANUFACTURER
• COMMAND SET
• MODEL

For example, a portion of the device ID string for the
Lexmark E250dn is:

MANUFACTURER:Lexmark International;
COMMAND SET:PCL 6 Emulation, PostScript
Level 3 Emulation, NPAP, PJL;
MODEL:Lexmark E250dn;

Of these keys, only COMMAND SET is utilized by the
Microchip USB Printer Client Driver.

This request cannot be used with printers that indicate
customer driver support in their interface descriptor.

Get Port Status
This request returns the printer’s current status in a
single byte that is compatible with the status register of
a standard PC parallel port, as shown in Table 2.

TABLE 2: PRINTER PORT STATUS

The Printer Client Driver provides a function to request
the printer status:

BYTE USBHostPrinterGetStatus
(BYTE deviceAddress, BYTE *status);

This request cannot be used with printers that indicate
customer driver support in their interface descriptor.

Name bmRequestType bRequest wValue wIndex wLength Data

GET DEVICE ID 0xA1 0 Config
Index

Interface and
Alternate Setting

Maximum
Length

1284 Device
ID String

GET PORT STATUS 0xA1 1 0 Interface 1 BYTE
SOFT RESET 0x21 2 0 Interface 0 None

Bit(s) Field Description

7..6 Reserved Reserved for future use; device shall return these bits reset to ‘0’.
5 Paper Empty 1 = Paper Empty, 0 = Paper Not Empty
4 Select 1 = Selected, 0 = Not Selected
3 Not Error 1 = No Error, 0 = Error

2..0 Reserved Reserved for future use; device shall return these bits reset to ‘0’.
DS01233A-page 2 © 2008 Microchip Technology Inc.

AN1233

Soft Reset
This request flushes all buffers, resets the Bulk OUT
and Bulk IN pipes to their default states and clears all
stall conditions. It does not change the USB addressing
or configuration.

The Printer Client Driver provides a function to issue
the soft Reset command:

BYTE USBHostPrinterReset
(BYTE deviceAddress);

This request cannot be used with printers that indicate
customer driver support in their interface descriptor.

PRINTER LANGUAGES
The USB specification describes how to send data to
the printer, but it does not specify the data itself. The
data requirements for a printer are described by the
Page Description Language(s) specified in the
COMMAND SET portion of the device ID string
described above. If a printer indicates custom driver
support in its interface, then the printer language
cannot be determined via the device ID string, and
must be known and specified explicitly.

There are a wide variety of Page Description
Languages (PDLs) used to support the vast number of
available printers. Many low-end printers receive only
binary data, relying on the USB host (usually a PC) to
perform the memory and computational intensive
processing required to determine exactly how to print a
page. These printers are not conducive to an embed-
ded application, where memory and processing
resources are fixed. Many manufactures also provide
printers with higher level Page Description Language
support. These printers are a much better fit for an
embedded application, as they allow an embedded
host to shift some of the resource burden to the printer.

Currently, Microchip provides support for the following
languages:

• PostScript – Created by Adobe Systems,
PostScript is an interpreted, stack-based
language with similarities to Forth and Lisp.
Elegant, complex graphics can be described
easily (full sheet printers only).

• PCL 5 – Created by HP, there have been several
versions of PCL, not all of which are compatible.
In general, PCL 5 utilizes ASCII rather than binary
data (as utilized by PCL 6), and introduced
support for vector (HP-GL/2) graphics. PCL 3 is a
limited subset of PCL 5, without vector graphics
and limited landscape support (full sheet printers
only).

• ESC/POS – Created by Seiko Epson, ESC/POS is
tailored for Point-of-Sale applications, and is used
by a wide variety of receipt and label printers avail-
able from Seiko Epson and other manufacturers.
While the basic commands are consistent across
printers, not all printers support all commands, and
command parameters can differ across printers. If
using a POS printer, consider limiting support to
explicit models via the device VID/PID, and test the
application with those printers to ensure accurate
output. Some minor command modifications may
be required (POS printers only).

In general, there are three types of printed output:

• Text
• Bit-mapped (raster) images
• Vector graphics

Not all printer languages support all types of printed
output. Many printers support text and bit-mapped
images, but not vector graphics. Be sure to determine
the type of printed output you want to produce, and
ensure that the target printers support that output.

Creating Custom Printer Language
Support
Additional printer language support can be added
relatively easily by creating a language driver that has
the same interface as the existing language drivers.
Refer to the Help file documentation installed with the
USB Embedded Host Stack for details about the inter-
face. Note that the application will have to be manually
configured to utilize the custom language support.

Note: Please refer to the Help file documentation
installed with the USB Embedded Host
Stack for implementation limitations.
© 2008 Microchip Technology Inc. DS01233A-page 3

AN1233
USING THE PRINTER CLIENT DRIVER

Application Architecture
An application that utilizes the Microchip USB
Embedded Host Printer Client Driver has an
architecture described by Figure 1.

FIGURE 1: APPLICATION
ARCHITECTURE

Selecting Printer Languages
An application can support one or more printer
languages. If the application targets a single printer,
then it can specify only the printer language used by
the target printer. If multiple printers may be used, then
the application may want to include multiple printer
languages. At least one printer language must be
included in the application.

The Printer Client Driver will first see if a printer language
has been explicitly selected for an attaching printer. If the
printer does not indicate Printer Class support in its
interface descriptor, then the printer language must be
specified explicitly. Otherwise, the Printer Client Driver
can automatically select a printer language for an attach-
ing printer based on the printer languages included in
the application and the printer language support pub-
lished by the printer in its device ID string. In this case,
the actual language selection is transparent to the
application. If a printer supports multiple languages, the
application may choose to specify which language to
use to assure consistent behavior.

USB Embedded Host Driver

Printer Client Driver

Printer
Language
PostScript

Printer
Language

PCL 5

Printer
Language

Other

Printer Client Driver API

Application

Printer
Language
ESC/POS

Note: Many printers, especially POS printers, do
not advertise support for the Printer Class
in their descriptors, and therefore, do not
support the device request to obtain the
device ID string. Also, many POS printers
that do advertise Printer Class support do
not have a standard format for specifying
the printer language (ESC/POS) within
their device ID string. Finally, the exact
implementation of the printer language
(ESC/POS) varies slightly between
different manufacturers and models, and
requires compile-time configuration.
Therefore, for POS printers, it is recom-
mended to target a specific printer make
and model, specify that model explicitly via
its VID and PID in the TPL, and explicitly
select the printer language for that printer.
DS01233A-page 4 © 2008 Microchip Technology Inc.

AN1233

Configuring the Printer Client Driver
Use the USB configuration tool, USBConfig.exe, or
the USB library configuration tool provided in the
MPLAB® IDE VDI to configure the Printer Client Driver.

Printer Class devices utilize bulk transfers, so ensure
that the Support Bulk Transfers checkbox is checked.
The Printer Client Driver utilizes transfer events from the
USB Embedded Host driver, so be sure to check the
Generate Transfer Events checkbox on the Host tab.

FIGURE 2: USBConfig, HOST TAB
© 2008 Microchip Technology Inc. DS01233A-page 5

AN1233

Select the TPL tab and add support for the required
printers. Explicit support for the Epson TM-T88IV is
shown in Figure 3. Generic printer support can be
specified by the entries shown in Figure 4.

FIGURE 3: USBConfig, TPL TAB – EXPLICIT PRINTER SUPPORT
DS01233A-page 6 © 2008 Microchip Technology Inc.

AN1233

FIGURE 4: USBConfig, TPL TAB – GENERIC PRINTER SUPPORT
© 2008 Microchip Technology Inc. DS01233A-page 7

AN1233

Select the Printer tab and check the Printer Client is
used in Host Mode checkbox. The Printer Client
Driver allows users to create a queue of printer
commands, so printer commands can be issued with a
minimum time delay between commands. Select the
size of this queue at the Command Queue Size edit
box.

Check the Provide Explicit Language Selection
checkbox to specify the language for a particular printer.
The configuration tool will automatically populate the
Printer combo box with all printer devices specified by
VID and PID in the TPL. Select the desired printer in the
Printer combo box, select the printer language in the
Printer Language combo box, adjust the Support
Flags as required, and click Add to Printer List.
The Support Flags are:

• Vector Graphics – Whether or not this printer
supports vector graphics. To configure support for
a printer that uses the PCL 3 printer language,
select PCL 5 in the Printer Language combo box
and uncheck the Vector Graphics support flag.

To remove an entry from the Explicit Printer Language
Selection list, select the entry to remove, then right click
on the entry and select Remove From List. If all of the
supported printers have explicit language support, you
can uncheck the Allow Dynamic Language Selection
checkbox to save program memory and heap space.

Verify that the required printer languages are enabled
in the Supported Printer Languages box. If ESC/POS
is supported, specify the printer model configuration
file.

If the application uses the printer interface to the
Microchip Graphics Library, check the Use Graphics
Library Interface checkbox. Refer to the “Demon-
stration Programs” section for an example of using
the Graphics Library with the USB Printer Client Driver.

Figure 5 illustrates how to populate the tab to support a
single POS printer model, corresponding to the TPL
shown in Figure 3.

FIGURE 5: USBConfig, PRINTER TAB – EXPLICIT PRINTER SUPPORT
DS01233A-page 8 © 2008 Microchip Technology Inc.

AN1233

Figure 6 illustrates how to populate the tab to provide
generic printer support, corresponding to the TPL
shown in Figure 4. This method is not recommended
for POS printers.

FIGURE 6: USBConfig, PRINTER TAB – GENERIC PRINTER SUPPORT
© 2008 Microchip Technology Inc. DS01233A-page 9

AN1233

Printer Client Driver Events
The Printer Client Driver is an event driven USB
Embedded Host client driver. It utilizes transfer events
generated by the USB Embedded Host driver and
sends printer events to the application. The Printer
Client Driver generates the following events:

• EVENT_PRINTER_ATTACH – This event indicates
that a printing device has successfully attached:
the device enumerated correctly and utilizes one
of the printer languages included in the applica-
tion. This event also provides the address of the
printer on the USB bus, which the application
must use when sending commands to the printer.

• EVENT_PRINTER_DETACH – This event indicates
that the printing device that was previously on the
bus at the specified address is no longer
attached.

• EVENT_PRINTER_REQUEST_DONE – This event
indicates that the class-specific request initiated
by the application is complete. Class-specific
requests issued by the Printer Client Driver itself
do not generate this event.

• EVENT_PRINTER_RX_DONE – This event
indicates that the Bulk IN transfer initiated by the
application is complete.

• EVENT_PRINTER_TX_DONE – This event indi-
cates that the Bulk OUT transfer initiated by the
application is complete. Refer to the “Creating
Printed Output” section for more information on
generating and suppressing this event.

• EVENT_PRINTER_UNSUPPORTED – This event
indicates that a printer tried to attach, but either
the application does not contain the printer
language needed to communicate with the printer,
or the application does not have enough dynamic
memory (heap space) available to support the
device.

The Full Sheet Printed Page
The printed output can be oriented as either portrait or
landscape. The position on the paper is described by
(X,Y) coordinates, with the X-axis being the horizontal
position on the paper and the Y-axis being the vertical
position on the paper. The origin (0,0) is located at the
upper left corner of the page, regardless of the orienta-
tion (see Figure 7). The coordinate system is specified
in terms of points; there are 72 points per inch. Location
(72,72) is located one inch down from the top edge of
the paper and one inch to the right of the left side of the
paper.

FIGURE 7: COORDINATE SYSTEM FOR FULL PAGE PRINTERS

0

0

0

0

Portrait Orientation
 Width: 612
 Height: 792

Landscape Orientation
 Width: 792
 Height: 612
DS01233A-page 10 © 2008 Microchip Technology Inc.

AN1233

The POS Printed Page
The orientation of the POS printer output is always
horizontal, beginning at the upper left corner of the
paper. Currently, (X,Y) coordinates cannot be used to
specify the location on the paper (this feature is
planned for later implementation for applications such
as label printing).

Creating Printed Output
After the application receives the event,
EVENT_PRINTER_ATTACH, and receives the USB
address of the printer, the application can generate
printed output. All printing commands utilize a simple
API.

Before issuing a command, see if there is room in the
printer command queue to issue another printer
command by calling the function:

BOOL USBHostPrinterCommandReady(BYTE
deviceAddress);

If this function returns TRUE, then issue the printer
command by calling the function:

BYTE USBHostPrinterCommand(BYTE
deviceAddress, USB_PRINTER_COMMAND
command, void *data, DWORD size, BYTE
flags);

If USBHostPrinterCommand() is called and there is
no room in the printer command queue, the function will
return an error.

If the application blocks other execution while printing,
it can use a macro that combines these two commands
into a single call:

void USBHostPrinterCommandWithReadyWait
(BYTE &returnCode, BYTE deviceAddress,
USB_PRINTER_COMMAND command,
USB_DATA_POINTER data, DWORD size, BYTE
flags);

While there is no space available in the printer command
queue, this macro calls USBTasks() to perform
required USB maintenance tasks. When space is avail-
able for another printer command, the macro will then
call USBHostPrinterCommand() with the indicated
parameters. Upon completion, the returnCode
parameter contains the return code from
USBHostPrinterCommand().

To start a print job, issue the command,
USB_PRINTER_JOB_START. This command tells the
printer to reset back to its default state.

When printing text and bit-mapped images, the data
source can be located in either RAM or ROM. The loca-
tion of the data pointed to by the data parameter is
specified in the flags parameter. If the data is located
in RAM, the application can also request that the client
driver make a copy of the data, so the application can
overwrite the data area immediately after the function
returns. The various allowed flags for data specification
are:

• USB_PRINTER_TRANSFER_COPY_DATA – The
client driver will make a copy of the data, allowing
the application to immediately overwrite the data
buffer.

• USB_PRINTER_TRANSFER_STATIC_DATA – The
client driver will send the data directly from the
specified data buffer. If the user overwrites the
data buffer before the command is actually
sent to the printer, then the new data will be
sent, not the data that existed when
USBHostPrinterCommand() was called.

• USB_PRINTER_TRANSFER_FROM_ROM – The
data parameter points to data in ROM. In this
case, the client driver will automatically make a
RAM copy of the device because the USB OTG
peripheral can only access data in RAM. Not all
commands support transfers from ROM, so be
sure to check the Help file for the allowable
command parameters.

• USB_PRINTER_TRANSFER_FROM_RAM –
(default) The data parameter points to data in
RAM.

Note: Refer to the Help file documentation
installed with the USB Embedded Host
Stack for the complete list of printer com-
mands, their usage and their required
parameters and data structures.
© 2008 Microchip Technology Inc. DS01233A-page 11

AN1233

After issuing all printing commands, issue the
command, USB_PRINTER_JOB_STOP, to print the
current page, eject it and terminate the print job. By
default, the event, EVENT_PRINTER_TX_DONE, is
issued by the Printer Client Driver upon completion of
the USB_PRINTER_JOB_STOP command only. If the
application needs to see this event upon completion

of other printer commands, include
USB_PRINTER_TRANSFER_NOTIFY in the flags
parameter of the USBHostPrinterCommand() com-
mand. For example, to eject the current page and
receive notification when the command is successfully
sent to the printer, issue the following command:

EXAMPLE 1:

General Printing – Full Sheet Only
Before issuing any printing commands, establish the
page orientation by issuing either the command,
USB_PRINTER_ORIENTATION_PORTRAIT, or the com-
mand, USB_PRINTER_ORIENTATION_LANDSCAPE. If
printing commands are issued before establishing the
paper orientation, the printed output may not be correct.

Before printing text, images and many graphic items,
tell the printer the page location of each item with the
command, USB_PRINTER_SET_POSITION.

If the application prints multiple output pages within a
single print job, issue the command,
USB_PRINTER_EJECT_PAGE, to print the current page,
eject it and proceed to the next page. After this com-
mand, all orientation, font and line type commands must
be reissued. If the output consists of only a single page,
this command should be omitted; issuing this command
may result in an extra, blank page.

General Printing – POS Only
With POS printers, items are printed as soon as they
are received by the printer. Therefore, it is important to
send all setup commands before sending any printing
commands.

POS printers are fundamentally single line printers,
though graphics printing is also supported. The printer
can automatically print text, graphics and bar codes (if
supported) as either left, center or right justified by
sending one of the following commands:

• USB_PRINTER_POS_JUSTIFICATION_LEFT

• USB_PRINTER_POS_JUSTIFICATION_CENTER

• USB_PRINTER_POS_JUSTIFICATION_RIGHT

Many POS printers feature an automatic cutter. Use the
command, USB PRINTER_POS_CUT_PARTIAL or
USB_PRINTER_POS_CUT, to feed and partially, or
completely, cut the paper.

Printing Text – Full Sheet Only
Before printing text, issue the following commands to
describe the text:

• USB_PRINTER_FONT_NAME – Name of the font.
Refer to the Help file for the list of available fonts.

• USB_PRINTER_FONT_SIZE – Size of the font in
points.

• USB_PRINTER_FONT_ITALIC or
USB_PRINTER_FONT_UPRIGHT – Font
inclination.

• USB_PRINTER_FONT_BOLD or
USB_PRINTER_FONT_MEDIUM – Font weight.

Upon receiving these commands, the printer will select
the best match from its internally supported fonts. If the
printer does not support the explicit font specified, it will
select the closest possible match. The exact choice is
printer dependent. In general, PostScript printers
provide the most complete font support.

For maximum compatibility with various printers, text
printing requires three commands:

• USB_PRINTER_TEXT_START – Prepares the
printer for printing text.

• USB_PRINTER_TEXT – Sends the actual text to
print.

• USB_PRINTER_TEXT_STOP – Terminates the
text print.

These commands must be issued contiguously. No
other commands can be inserted between these
commands.

The text will be printed using the currently selected
font, at the current printer position. The location of the
actual text to print is specified by the flags passed to the
printer command function.

if USBHostPrinterCommandReady(deviceAddress)
{
 USBHostPrinterCommand(deviceAddress,
 USB_PRINTER_EJECT_PAGE, USB_NULL, 0,
 USB_PRINTER_TRANSFER_NOTIFY);
}

DS01233A-page 12 © 2008 Microchip Technology Inc.

AN1233

Embedded carriage returns and line feeds are handled
differently by the different printer languages. For maxi-
mum compatibility, use the text printing sequence for

each line of text, specifying the text location with the
command, USB_PRINTER_SET_POSITION, before
each line.

EXAMPLE 2:

Printing Text – POS Only
Before printing text, issue the following commands to
describe the text:

• USB_PRINTER_FONT_NAME – Name of the font.
POS printers also specify the size of the font in
the font name. Refer to the Help file for the list of
available fonts.

• USB_PRINTER_FONT_BOLD or
USB_PRINTER_FONT_MEDIUM – Font weight.

The font specification will apply until the printer
receives another font command.

Since POS printers primarily print one line of
text at a time, use the command,
USB_PRINTER_POS_TEXT_LINE, to print a single, null-
terminated line of text and feed the specified number of
lines after the text. For compatibility, the three-
command sequence used for full sheet printing,
described above, can also be used. Use the command,
USB_PRINTER_POS_FEED, to feed a specified number
of blank lines.

The text will be printed using the currently selected
font, at the current printer position, with the currently
selected justification (left, center or right).

EXAMPLE 3:

USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,
 USB_PRINTER_JOB_START, USB_NULL, 0, 0);

USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,
 USB_PRINTER_FONT_NAME, USB_NULL, USB_PRINTER_FONT_COURIER, 0);
USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,
 USB_PRINTER_FONT_SIZE, USB_NULL, (DWORD)24, 0);
USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,
 USB_PRINTER_FONT_BOLD, USB_NULL, 0, 0);

USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,
 USB_PRINTER_SET_POSITION, USB_NULL,
 USBHostPrinterPosition(100, 100), 0);
USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,
 USB_PRINTER_TEXT_START, USB_NULL, 0, 0);
USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,
 USB_PRINTER_TEXT, USB_DATA_POINTER_RAM(buffer), strlen(buffer), 0);
USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,
 USB_PRINTER_TEXT_STOP, USB_NULL, 0, 0);

USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,

 USB_PRINTER_JOB_STOP, USB_NULL, 0, 0);

USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,
 USB_PRINTER_JOB_START, USB_NULL, 0, 0);

USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,
 USB_PRINTER_POS_JUSTIFICATION_CENTER, USB_NULL, 0, 0);
USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,
 USB_PRINTER_FONT_NAME, USB_NULL, USB_PRINTER_FONT_POS_18x36, 0);
USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,
 USB_PRINTER_POS_TEXT_LINE, USB_DATA_POINTER_RAM("Hello world"), 1,
 USB_PRINTER_TRANSFER_COPY_DATA);
USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,
 USB_PRINTER_POS_CUT_PARTIAL, USB_NULL, 100, 0);

USBHostPrinterCommandWithReadyWait(&returnCode, printerInfo.deviceAddress,
 USB_PRINTER_JOB_STOP, USB_NULL, 0, 0);
© 2008 Microchip Technology Inc. DS01233A-page 13

AN1233

Printing Bit-Mapped Images – Full Sheet
Only
For maximum compatibility with various printers, bit-
mapped (raster) image printing requires four
commands:

• USB_PRINTER_IMAGE_START – Initializes the
printing of a bit-mapped image.

• USB_PRINTER_IMAGE_DATA_HEADER –
Indicates a new row of bit map data.

• USB_PRINTER_IMAGE_DATA – Sends one row of
the actual bit map data.

• USB_PRINTER_IMAGE_STOP – Terminates the
image print.

The command, USB_PRINTER_IMAGE_START,
requires a pointer to a structure of type,
USB_PRINTER_IMAGE_INFO, containing information
about the bit-mapped image, and where and how to print
the image. This structure contains the position on the
page to print the image, so the command,
USB_PRINTER_SET_POSITION, is not required before
printing an image. Printers can automatically resize bit-
mapped images. Some printers utilize a resolution value
(dots per inch) to specify the size of the printed image,
and some use a scale factor. Some printers support only
certain scale or resolution values, and some support a
wide range of values. For maximum compatibility with
various printers, specify both the resolution and the
scale members of the printer information structure.
Refer to Table 3 for example resolution and scale values
to generate similarly sized output.

TABLE 3: COMPATIBLE RESOLUTION
AND SCALE FACTORS

Bit map data is byte-based, with the Most Significant bit
representing the left most pixel in the image row. A
value of ‘0’ indicates a black pixel and a value of ‘1’
indicates a white pixel. The printer language will format
the data as required for the particular language. The bit
map data created by the font and bit map converter
utility supplied with the Microchip Graphics Library is
compatible with the required format.

Bit map data must be sent to the printer, one row at a
time. Before each row, issue the command,
USB_PRINTER_IMAGE_DATA_HEADER, then issue the
USB_PRINTER_IMAGE_DATA command, with the
transferFlags parameter set appropriately for the
location of the bit-mapped data (RAM or ROM). After all
rows of data have been sent, terminate the image print
with the USB_PRINTER_IMAGE_STOP command.

Resolution (DPI) Scale

75 1.0
100 0.75
150 0.5
200 0.37
300 0.25
600 0.13
DS01233A-page 14 © 2008 Microchip Technology Inc.

AN1233

The code in Example 4 illustrates how to send a
complete image stored in ROM to a full sheet printer.

EXAMPLE 4:
WORD currentRow;
USB_PRINTER_IMAGE_INFO imageInfo;
BYTE returnCode;
WORD widthBytes;
#if defined (__C30__)
 BYTE __prog__ *ptr;
 ptr = (BYTE __prog__ *)myImage.address;
#elif defined (__PIC32MX__)
 const BYTE *ptr;
 ptr = (const BYTE *)myImage.address;
#endif

// Extract the image height and width
imageInfo.width = ((WORD)ptr[5] << 8) + ptr[4];
imageInfo.height = ((WORD)ptr[3] << 8) + ptr[2];

ptr += 10; // skip the header info

widthBytes = (imageInfo.width + 7) / 8;

USBHostPrinterCommandWithReadyWait(&returnCode,
 printerInfo.deviceAddress, USB_PRINTER_IMAGE_START,
 USB_DATA_POINTER_RAM(&imageInfo),
 sizeof(USB_PRINTER_IMAGE_INFO), 0);

for (currentRow=0; currentRow<imageInfo.height; currentRow++)
{
 USBHostPrinterCommandWithReadyWait(&returnCode,
 printerInfo.deviceAddress, USB_PRINTER_IMAGE_DATA_HEADER,
 USB_NULL, imageInfo.width, 0);

 USBHostPrinterCommandWithReadyWait(&returnCode,
 printerInfo.deviceAddress, USB_PRINTER_IMAGE_DATA,
 USB_DATA_POINTER_ROM(ptr), imageInfo.width,
 USB_PRINTER_TRANSFER_FROM_ROM);

 ptr += widthBytes;
}

USBHostPrinterCommandWithReadyWait(&returnCode,
 printerInfo.deviceAddress, USB_PRINTER_IMAGE_STOP,

 USB_NULL, 0, 0);
© 2008 Microchip Technology Inc. DS01233A-page 15

AN1233

Printing Bit-Mapped Images – POS Only
Image printing on POS printers is very similar to print-
ing on full sheet printers. The major differences are the
scale specification and the data format.

POS printers utilize the densityVertical and
densityHorizontal members of the
USB_PRINTER_IMAGE_INFO rather than the scale
and resolution members. All POS printers that support
image printing support 8-bit vertical density, and many
also support 24-bit. Horizontal density can be either
single or double. If it is supported, 24-bit vertical density

and double horizontal density is recommended, as it
best maintains the original aspect ratio of the image. If
24-bit vertical density is not supported, then 8-bit
vertical and single horizontal density best maintains the
original aspect ratio of the image.

Image data must be sent to a POS printer in a specific
format based on the vertical density. The image must
be sent one row at a time, like the full sheet printers, but
each row has a depth of 8 or 24 pixels (1 or 3 bytes), as
opposed to a depth of one pixel for full sheet printers.
This format is illustrated by Figure 8.

FIGURE 8: 8-DOT AND 24-DOT DATA FORMATS

Since this format differs from the way graphic images
are stored, use the following function to format one row
of data:

USB_DATA_POINTER USBHostPrinterPOSImage-
DataFormat(USB_DATA_POINTER image, BYTE
imageLocation, WORD imageHeight, WORD
imageWidth, WORD *currentRow, BYTE
byteDepth, BYTE *imageData)

This routine will take the data at the location specified
by image and imageLocation with the specified
imageWidth. It formats the data to the specified
byteDepth (8-dot density = 1 byte, 24-dot density =
3 bytes) and stores it in the RAM location specified by
imageData. Upon return, the current row of pixels
(currentRow) is updated to reflect the next row of
pixels and the function returns a pointer to the next byte
of image data.

Byte
1

Byte
6

Byte
5

Byte
4

Byte
3

Byte
2

7

0

1

2

3

4

5

6

MSB

LSB

Byte
4

Byte
7

Byte
1

Byte
2

Byte
5

Byte
8

Byte
3

Byte
6

Byte
9

7

0

1

2

3

4

5

6

MSB

LSB

8-Dot Vertical Density

24-Dot Vertical Density
DS01233A-page 16 © 2008 Microchip Technology Inc.

AN1233

The code in Example 5 illustrates how to send a
complete image stored in ROM to a POS printer.

EXAMPLE 5:
WORD currentRow;
BYTE depthBytes;
BYTE *imageDataPOS;
USB_PRINTER_IMAGE_INFO imageInfo;
BYTE returnCode;
#if defined (__C30__)
 BYTE __prog__ *ptr;
 ptr = (BYTE __prog__ *)myImage.address;
#elif defined (__PIC32MX__)
 const BYTE *ptr;
 ptr = (const BYTE *)myImage.address;
#endif

imageInfo.densityVertical = 24; // 24-dot density
imageInfo.densityHorizontal = 2; // Double density

// Extract the image height and width
imageInfo.width = ((WORD)ptr[5] << 8) + ptr[4];
imageInfo.height = ((WORD)ptr[3] << 8) + ptr[2];

depthBytes = imageInfo.densityVertical / 8;
imageDataPOS = (BYTE *)malloc(imageInfo.width *
 depthBytes);

if (imageDataPOS == NULL)
{
 // Error - not enough heap space
}

USBHostPrinterCommandWithReadyWait(&returnCode,
 printerInfo.deviceAddress, USB_PRINTER_IMAGE_START,
 USB_DATA_POINTER_RAM(&imageInfo),
 sizeof(USB_PRINTER_IMAGE_INFO),
 0);

ptr += 10; // skip the header info

currentRow = 0;
while (currentRow < imageInfo.height)
{
 USBHostPrinterCommandWithReadyWait(&returnCode,
 printerInfo.deviceAddress,
 USB_PRINTER_IMAGE_DATA_HEADER, USB_NULL,
 imageInfo.width, 0);

 ptr = USBHostPrinterPOSImageDataFormat(
 USB_DATA_POINTER_ROM(ptr),
 USB_PRINTER_TRANSFER_FROM_ROM, imageInfo.height,
 imageInfo.width, ¤tRow, depthBytes,
 imageDataPOS).pointerROM;

 USBHostPrinterCommandWithReadyWait(&returnCode,
 printerInfo.deviceAddress, USB_PRINTER_IMAGE_DATA,
 USB_DATA_POINTER_RAM(imageDataPOS), imageInfo.width,
 USB_PRINTER_TRANSFER_COPY_DATA);
}

free(imageDataPOS);

USBHostPrinterCommandWithReadyWait(&returnCode,
 printerInfo.deviceAddress, USB_PRINTER_IMAGE_STOP,
 USB_NULL, 0, 0);
© 2008 Microchip Technology Inc. DS01233A-page 17

AN1233

Printing Graphics – Full Sheet Only
Many printers support vector graphics, allowing appli-
cations to print large, complex images using a series of
graphics commands rather than requiring large bit-
mapped images. Various graphic objects that can be
produced are:

• Lines
• Arcs
• Circles (filled and outlined)
• Bevels or rounded rectangles (filled and outlined)
• Rectangles (filled and outlined)
• Polygons (outlined)

Before printing graphic items, issue the following
commands to describe the line type used to create the
item:

• USB_PRINTER_GRAPHICS_LINE_TYPE – Select
a solid, dashed or dotted line.

• USB_PRINTER_GRAPHICS_LINE_WIDTH –
Select a thin (1 point) or thick (3 point) line.

• USB_PRINTER_GRAPHICS_LINE_END – Select
the style to use when terminating lines.

• USB_PRINTER_GRAPHICS_LINE_JOIN – Select
the style to use when connecting lines.

Graphic objects can be printed in either black or white.
Use the command, USB_PRINTER_GRAPHICS_COLOR,
to select the desired color. Graphic objects are printed
using opaque colors. For example, if a black circle with
a radius of two units is printed at a specified center loca-
tion, and subsequently, a white circle with a radius of one
unit is printed with the same center location, the final
output will appear as a ring or donut shape.

FIGURE 9: CONCENTRIC CIRCLES
WITH ALTERNATE COLORS

Graphics objects are drawn with the currently specified
line type and color. They are printed at the current
printer position unless otherwise indicated by the com-
mand description. For command name consistency,
the command, USB_PRINTER_GRAPHICS_MOVE_TO,
is provided with the same functionality as the
command, USB_PRINTER_SET_POSITION.

Graphic items typically require several parameters
to specify them completely. The union,
USB_PRINTER_GRAPHICS_PARAMETERS, provides
structures that support the various graphics
commands. Example 6 shows how to draw a circle.

EXAMPLE 6:

USB_PRINTER_GRAPHICS_PARAMETERS params;

params.sCircle.x = 100;
params.sCircle.y = 100;
params.sCircle.r = 50;
USBHostPrinterCommandWithReadyWait(
 &returnCode,
 printerInfo.deviceAddress,
 USB_PRINTER_GRAPHICS_CIRCLE_FILLED,
 USB_DATA_POINTER_RAM(¶ms),
 sizeof(params.sCircle), 0);
DS01233A-page 18 © 2008 Microchip Technology Inc.

AN1233

Printing Bar Codes – POS Only
Many POS have the built-in capability to easily print bar
codes. Most printers that have bar code support can
print the following types of bar codes:

• UPC-A
• UPC-E
• EAN 13
• EAN 8
• Code 39
• ITF
• CODEABAR

Some printers additionally support the following types
of bar codes:

• Code 93
• Code 128
• EAN 128

To create a barcode, call the function,
USBHostPrinterCommand(), or
USBHostPrinterCommandWithReadyWait() with
the command, USB_PRINTER_POS_BARCODE. The Data
Pointer must point to a data structure of type sBarCode
within the USB_PRINTER_GRAPHICS_PARAMETERS
union. Example 7 shows how to print a simple barcode.

EXAMPLE 7:

Getting Status Information
Two of the three Printer Class interfaces support
receiving data from the printer. The availability and for-
mat of the data is printer dependent. If the application
utilizes a specific target printer, it can use the following
commands to request the information:

EXAMPLE 8:

When the Printer Client Driver receives the
requested data, it will generate the event,
EVENT_PRINTER_RX_DONE. The application can then
examine the received data, which has been placed in
the specified buffer. To determine the amount of data
received, use the command:

DWORD USBHostPrinterGetRxLength(BYTE
deviceAddress);

char buffer[10];

strcpy(buffer, "Hello");
params.sBarCode.height = 75; // Height in dots.
params.sBarCode.type = USB_PRINTER_POS_BARCODE_CODE39;
params.sBarCode.textPosition = BARCODE_TEXT_BELOW;
params.sBarCode.textFont = BARCODE_TEXT_12x24;
params.sBarCode.data = (BYTE *)buffer;
params.sBarCode.dataLength = strlen(buffer);

USBHostPrinterCommandWithReadyWait(&returnCode,
 printerInfo.deviceAddress, USB_PRINTER_POS_BARCODE,
 USB_DATA_POINTER_RAM(¶ms.sBarCode),
 sizeof(params.sBarCode), 0);

if (!USBHostPrinterRxIsBusy(deviceAddress))
{
 USBHostPrinterRead(deviceAddress, &buffer,
 sizeof(buffer), USB_PRINTER_TRANSFER_NOTIFY);
}

© 2008 Microchip Technology Inc. DS01233A-page 19

AN1233
DEMONSTRATION PROGRAMS
The USB Embedded Host Printer Client Driver is
installed with the USB software support packages avail-
able for download at www.microchip.com/USB. After
installation, the Printer Client Driver files will be located
in the .\Microchip\USB\Printer Host Driver
and .\Microchip\Include\USB directories, and
three demonstration projects will be provided.

• .\USB Host - Printer - Print Screen
Demo. This demo illustrates how to use the
Graphics Library with the USB Printer Client
Driver, capture a signature from a touch screen,
and print it.

• .\USB Host - Printer - Simple Full
Sheet Demo. This demo illustrates how to send
output to a full sheet printer.

• .\USB Host - Printer - Simple POS
Demo. This demo illustrates how to send output to
a POS printer.

CONCLUSION
The USB Embedded Host Printing Device class pro-
vides a simple, standard interface to a printer. Although
there is a wide variety of printer languages used by the
multitude of available printers, some languages are
considered standard and are supported by multiple
manufacturers. Embedded applications can now easily
take advantage of this, and provide hardcopy output for
data presentation, snapshot reports, archival, receipts
and labeling.

RESOURCES
• USB Embedded Host Library Help file,
.\Microchip\Help\

• AN1140, “USB Embedded Host Stack”,
http://www.microchip.com

• AN1141, “USB Embedded Host Stack
Programmer's Guide”, http://www.microchip.com

• Universal Serial Bus web site: http://www.usb.org
• Microchip Technology Inc. web site:

http://www.microchip.com
DS01233A-page 20 © 2008 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2008 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS01233A-page 21

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00000A-page 22 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/02/08

	Introduction
	USB Printer Class
	Class-Specific Requests
	TABLE 1: Printer Class-Specific Request
	Get Device ID
	Get Port Status
	TABLE 2: Printer Port Status

	Soft Reset

	Printer Languages
	Creating Custom Printer Language Support

	Using the Printer Client Driver
	Application Architecture
	FIGURE 1: Application Architecture

	Selecting Printer Languages
	Configuring the Printer Client Driver
	FIGURE 2: USBConfig, Host Tab
	FIGURE 3: USBConfig, TPL Tab – Explicit Printer Support
	FIGURE 4: USBConfig, TPL Tab – Generic Printer Support
	FIGURE 5: USBConfig, Printer Tab – Explicit Printer Support
	FIGURE 6: USBConfig, Printer Tab – Generic Printer Support

	Printer Client Driver Events
	The Full Sheet Printed Page
	FIGURE 7: Coordinate System For Full Page Printers

	The POS Printed Page
	Creating Printed Output
	EXAMPLE 1:

	General Printing – Full Sheet Only
	General Printing – POS Only
	Printing Text – Full Sheet Only
	EXAMPLE 2:

	Printing Text – POS Only
	EXAMPLE 3:

	Printing Bit-Mapped Images – Full Sheet Only
	TABLE 3: Compatible Resolution and Scale Factors
	EXAMPLE 4:

	Printing Bit-Mapped Images – POS Only
	FIGURE 8: 8-dot and 24-dot Data Formats
	EXAMPLE 5:

	Printing Graphics – Full Sheet Only
	FIGURE 9: Concentric Circles with Alternate Colors
	EXAMPLE 6:

	Printing Bar Codes – POS Only
	EXAMPLE 7:

	Getting Status Information
	EXAMPLE 8:

	Demonstration Programs
	Conclusion
	Resources
	Worldwide Sales and Service

