490 lines
15 KiB
C
490 lines
15 KiB
C
|
/*
|
||
|
* drivers/media/i2c/smiapp-pll.c
|
||
|
*
|
||
|
* Generic driver for SMIA/SMIA++ compliant camera modules
|
||
|
*
|
||
|
* Copyright (C) 2011--2012 Nokia Corporation
|
||
|
* Contact: Sakari Ailus <sakari.ailus@iki.fi>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU General Public License
|
||
|
* version 2 as published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* General Public License for more details.
|
||
|
*/
|
||
|
|
||
|
#include <linux/device.h>
|
||
|
#include <linux/gcd.h>
|
||
|
#include <linux/lcm.h>
|
||
|
#include <linux/module.h>
|
||
|
|
||
|
#include "smiapp-pll.h"
|
||
|
|
||
|
/* Return an even number or one. */
|
||
|
static inline uint32_t clk_div_even(uint32_t a)
|
||
|
{
|
||
|
return max_t(uint32_t, 1, a & ~1);
|
||
|
}
|
||
|
|
||
|
/* Return an even number or one. */
|
||
|
static inline uint32_t clk_div_even_up(uint32_t a)
|
||
|
{
|
||
|
if (a == 1)
|
||
|
return 1;
|
||
|
return (a + 1) & ~1;
|
||
|
}
|
||
|
|
||
|
static inline uint32_t is_one_or_even(uint32_t a)
|
||
|
{
|
||
|
if (a == 1)
|
||
|
return 1;
|
||
|
if (a & 1)
|
||
|
return 0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int bounds_check(struct device *dev, uint32_t val,
|
||
|
uint32_t min, uint32_t max, char *str)
|
||
|
{
|
||
|
if (val >= min && val <= max)
|
||
|
return 0;
|
||
|
|
||
|
dev_dbg(dev, "%s out of bounds: %d (%d--%d)\n", str, val, min, max);
|
||
|
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
static void print_pll(struct device *dev, struct smiapp_pll *pll)
|
||
|
{
|
||
|
dev_dbg(dev, "pre_pll_clk_div\t%u\n", pll->pre_pll_clk_div);
|
||
|
dev_dbg(dev, "pll_multiplier \t%u\n", pll->pll_multiplier);
|
||
|
if (!(pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS)) {
|
||
|
dev_dbg(dev, "op_sys_clk_div \t%u\n", pll->op.sys_clk_div);
|
||
|
dev_dbg(dev, "op_pix_clk_div \t%u\n", pll->op.pix_clk_div);
|
||
|
}
|
||
|
dev_dbg(dev, "vt_sys_clk_div \t%u\n", pll->vt.sys_clk_div);
|
||
|
dev_dbg(dev, "vt_pix_clk_div \t%u\n", pll->vt.pix_clk_div);
|
||
|
|
||
|
dev_dbg(dev, "ext_clk_freq_hz \t%u\n", pll->ext_clk_freq_hz);
|
||
|
dev_dbg(dev, "pll_ip_clk_freq_hz \t%u\n", pll->pll_ip_clk_freq_hz);
|
||
|
dev_dbg(dev, "pll_op_clk_freq_hz \t%u\n", pll->pll_op_clk_freq_hz);
|
||
|
if (!(pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS)) {
|
||
|
dev_dbg(dev, "op_sys_clk_freq_hz \t%u\n",
|
||
|
pll->op.sys_clk_freq_hz);
|
||
|
dev_dbg(dev, "op_pix_clk_freq_hz \t%u\n",
|
||
|
pll->op.pix_clk_freq_hz);
|
||
|
}
|
||
|
dev_dbg(dev, "vt_sys_clk_freq_hz \t%u\n", pll->vt.sys_clk_freq_hz);
|
||
|
dev_dbg(dev, "vt_pix_clk_freq_hz \t%u\n", pll->vt.pix_clk_freq_hz);
|
||
|
}
|
||
|
|
||
|
static int check_all_bounds(struct device *dev,
|
||
|
const struct smiapp_pll_limits *limits,
|
||
|
const struct smiapp_pll_branch_limits *op_limits,
|
||
|
struct smiapp_pll *pll,
|
||
|
struct smiapp_pll_branch *op_pll)
|
||
|
{
|
||
|
int rval;
|
||
|
|
||
|
rval = bounds_check(dev, pll->pll_ip_clk_freq_hz,
|
||
|
limits->min_pll_ip_freq_hz,
|
||
|
limits->max_pll_ip_freq_hz,
|
||
|
"pll_ip_clk_freq_hz");
|
||
|
if (!rval)
|
||
|
rval = bounds_check(
|
||
|
dev, pll->pll_multiplier,
|
||
|
limits->min_pll_multiplier, limits->max_pll_multiplier,
|
||
|
"pll_multiplier");
|
||
|
if (!rval)
|
||
|
rval = bounds_check(
|
||
|
dev, pll->pll_op_clk_freq_hz,
|
||
|
limits->min_pll_op_freq_hz, limits->max_pll_op_freq_hz,
|
||
|
"pll_op_clk_freq_hz");
|
||
|
if (!rval)
|
||
|
rval = bounds_check(
|
||
|
dev, op_pll->sys_clk_div,
|
||
|
op_limits->min_sys_clk_div, op_limits->max_sys_clk_div,
|
||
|
"op_sys_clk_div");
|
||
|
if (!rval)
|
||
|
rval = bounds_check(
|
||
|
dev, op_pll->sys_clk_freq_hz,
|
||
|
op_limits->min_sys_clk_freq_hz,
|
||
|
op_limits->max_sys_clk_freq_hz,
|
||
|
"op_sys_clk_freq_hz");
|
||
|
if (!rval)
|
||
|
rval = bounds_check(
|
||
|
dev, op_pll->pix_clk_freq_hz,
|
||
|
op_limits->min_pix_clk_freq_hz,
|
||
|
op_limits->max_pix_clk_freq_hz,
|
||
|
"op_pix_clk_freq_hz");
|
||
|
|
||
|
/*
|
||
|
* If there are no OP clocks, the VT clocks are contained in
|
||
|
* the OP clock struct.
|
||
|
*/
|
||
|
if (pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS)
|
||
|
return rval;
|
||
|
|
||
|
if (!rval)
|
||
|
rval = bounds_check(
|
||
|
dev, pll->vt.sys_clk_freq_hz,
|
||
|
limits->vt.min_sys_clk_freq_hz,
|
||
|
limits->vt.max_sys_clk_freq_hz,
|
||
|
"vt_sys_clk_freq_hz");
|
||
|
if (!rval)
|
||
|
rval = bounds_check(
|
||
|
dev, pll->vt.pix_clk_freq_hz,
|
||
|
limits->vt.min_pix_clk_freq_hz,
|
||
|
limits->vt.max_pix_clk_freq_hz,
|
||
|
"vt_pix_clk_freq_hz");
|
||
|
|
||
|
return rval;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Heuristically guess the PLL tree for a given common multiplier and
|
||
|
* divisor. Begin with the operational timing and continue to video
|
||
|
* timing once operational timing has been verified.
|
||
|
*
|
||
|
* @mul is the PLL multiplier and @div is the common divisor
|
||
|
* (pre_pll_clk_div and op_sys_clk_div combined). The final PLL
|
||
|
* multiplier will be a multiple of @mul.
|
||
|
*
|
||
|
* @return Zero on success, error code on error.
|
||
|
*/
|
||
|
static int __smiapp_pll_calculate(
|
||
|
struct device *dev, const struct smiapp_pll_limits *limits,
|
||
|
const struct smiapp_pll_branch_limits *op_limits,
|
||
|
struct smiapp_pll *pll, struct smiapp_pll_branch *op_pll, uint32_t mul,
|
||
|
uint32_t div, uint32_t lane_op_clock_ratio)
|
||
|
{
|
||
|
uint32_t sys_div;
|
||
|
uint32_t best_pix_div = INT_MAX >> 1;
|
||
|
uint32_t vt_op_binning_div;
|
||
|
/*
|
||
|
* Higher multipliers (and divisors) are often required than
|
||
|
* necessitated by the external clock and the output clocks.
|
||
|
* There are limits for all values in the clock tree. These
|
||
|
* are the minimum and maximum multiplier for mul.
|
||
|
*/
|
||
|
uint32_t more_mul_min, more_mul_max;
|
||
|
uint32_t more_mul_factor;
|
||
|
uint32_t min_vt_div, max_vt_div, vt_div;
|
||
|
uint32_t min_sys_div, max_sys_div;
|
||
|
unsigned int i;
|
||
|
|
||
|
/*
|
||
|
* Get pre_pll_clk_div so that our pll_op_clk_freq_hz won't be
|
||
|
* too high.
|
||
|
*/
|
||
|
dev_dbg(dev, "pre_pll_clk_div %u\n", pll->pre_pll_clk_div);
|
||
|
|
||
|
/* Don't go above max pll multiplier. */
|
||
|
more_mul_max = limits->max_pll_multiplier / mul;
|
||
|
dev_dbg(dev, "more_mul_max: max_pll_multiplier check: %u\n",
|
||
|
more_mul_max);
|
||
|
/* Don't go above max pll op frequency. */
|
||
|
more_mul_max =
|
||
|
min_t(uint32_t,
|
||
|
more_mul_max,
|
||
|
limits->max_pll_op_freq_hz
|
||
|
/ (pll->ext_clk_freq_hz / pll->pre_pll_clk_div * mul));
|
||
|
dev_dbg(dev, "more_mul_max: max_pll_op_freq_hz check: %u\n",
|
||
|
more_mul_max);
|
||
|
/* Don't go above the division capability of op sys clock divider. */
|
||
|
more_mul_max = min(more_mul_max,
|
||
|
op_limits->max_sys_clk_div * pll->pre_pll_clk_div
|
||
|
/ div);
|
||
|
dev_dbg(dev, "more_mul_max: max_op_sys_clk_div check: %u\n",
|
||
|
more_mul_max);
|
||
|
/* Ensure we won't go above min_pll_multiplier. */
|
||
|
more_mul_max = min(more_mul_max,
|
||
|
DIV_ROUND_UP(limits->max_pll_multiplier, mul));
|
||
|
dev_dbg(dev, "more_mul_max: min_pll_multiplier check: %u\n",
|
||
|
more_mul_max);
|
||
|
|
||
|
/* Ensure we won't go below min_pll_op_freq_hz. */
|
||
|
more_mul_min = DIV_ROUND_UP(limits->min_pll_op_freq_hz,
|
||
|
pll->ext_clk_freq_hz / pll->pre_pll_clk_div
|
||
|
* mul);
|
||
|
dev_dbg(dev, "more_mul_min: min_pll_op_freq_hz check: %u\n",
|
||
|
more_mul_min);
|
||
|
/* Ensure we won't go below min_pll_multiplier. */
|
||
|
more_mul_min = max(more_mul_min,
|
||
|
DIV_ROUND_UP(limits->min_pll_multiplier, mul));
|
||
|
dev_dbg(dev, "more_mul_min: min_pll_multiplier check: %u\n",
|
||
|
more_mul_min);
|
||
|
|
||
|
if (more_mul_min > more_mul_max) {
|
||
|
dev_dbg(dev,
|
||
|
"unable to compute more_mul_min and more_mul_max\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
more_mul_factor = lcm(div, pll->pre_pll_clk_div) / div;
|
||
|
dev_dbg(dev, "more_mul_factor: %u\n", more_mul_factor);
|
||
|
more_mul_factor = lcm(more_mul_factor, op_limits->min_sys_clk_div);
|
||
|
dev_dbg(dev, "more_mul_factor: min_op_sys_clk_div: %d\n",
|
||
|
more_mul_factor);
|
||
|
i = roundup(more_mul_min, more_mul_factor);
|
||
|
if (!is_one_or_even(i))
|
||
|
i <<= 1;
|
||
|
|
||
|
dev_dbg(dev, "final more_mul: %u\n", i);
|
||
|
if (i > more_mul_max) {
|
||
|
dev_dbg(dev, "final more_mul is bad, max %u\n", more_mul_max);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
pll->pll_multiplier = mul * i;
|
||
|
op_pll->sys_clk_div = div * i / pll->pre_pll_clk_div;
|
||
|
dev_dbg(dev, "op_sys_clk_div: %u\n", op_pll->sys_clk_div);
|
||
|
|
||
|
pll->pll_ip_clk_freq_hz = pll->ext_clk_freq_hz
|
||
|
/ pll->pre_pll_clk_div;
|
||
|
|
||
|
pll->pll_op_clk_freq_hz = pll->pll_ip_clk_freq_hz
|
||
|
* pll->pll_multiplier;
|
||
|
|
||
|
/* Derive pll_op_clk_freq_hz. */
|
||
|
op_pll->sys_clk_freq_hz =
|
||
|
pll->pll_op_clk_freq_hz / op_pll->sys_clk_div;
|
||
|
|
||
|
op_pll->pix_clk_div = pll->bits_per_pixel;
|
||
|
dev_dbg(dev, "op_pix_clk_div: %u\n", op_pll->pix_clk_div);
|
||
|
|
||
|
op_pll->pix_clk_freq_hz =
|
||
|
op_pll->sys_clk_freq_hz / op_pll->pix_clk_div;
|
||
|
|
||
|
if (pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS) {
|
||
|
/* No OP clocks --- VT clocks are used instead. */
|
||
|
goto out_skip_vt_calc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Some sensors perform analogue binning and some do this
|
||
|
* digitally. The ones doing this digitally can be roughly be
|
||
|
* found out using this formula. The ones doing this digitally
|
||
|
* should run at higher clock rate, so smaller divisor is used
|
||
|
* on video timing side.
|
||
|
*/
|
||
|
if (limits->min_line_length_pck_bin > limits->min_line_length_pck
|
||
|
/ pll->binning_horizontal)
|
||
|
vt_op_binning_div = pll->binning_horizontal;
|
||
|
else
|
||
|
vt_op_binning_div = 1;
|
||
|
dev_dbg(dev, "vt_op_binning_div: %u\n", vt_op_binning_div);
|
||
|
|
||
|
/*
|
||
|
* Profile 2 supports vt_pix_clk_div E [4, 10]
|
||
|
*
|
||
|
* Horizontal binning can be used as a base for difference in
|
||
|
* divisors. One must make sure that horizontal blanking is
|
||
|
* enough to accommodate the CSI-2 sync codes.
|
||
|
*
|
||
|
* Take scaling factor into account as well.
|
||
|
*
|
||
|
* Find absolute limits for the factor of vt divider.
|
||
|
*/
|
||
|
dev_dbg(dev, "scale_m: %u\n", pll->scale_m);
|
||
|
min_vt_div = DIV_ROUND_UP(op_pll->pix_clk_div * op_pll->sys_clk_div
|
||
|
* pll->scale_n,
|
||
|
lane_op_clock_ratio * vt_op_binning_div
|
||
|
* pll->scale_m);
|
||
|
|
||
|
/* Find smallest and biggest allowed vt divisor. */
|
||
|
dev_dbg(dev, "min_vt_div: %u\n", min_vt_div);
|
||
|
min_vt_div = max(min_vt_div,
|
||
|
DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
|
||
|
limits->vt.max_pix_clk_freq_hz));
|
||
|
dev_dbg(dev, "min_vt_div: max_vt_pix_clk_freq_hz: %u\n",
|
||
|
min_vt_div);
|
||
|
min_vt_div = max_t(uint32_t, min_vt_div,
|
||
|
limits->vt.min_pix_clk_div
|
||
|
* limits->vt.min_sys_clk_div);
|
||
|
dev_dbg(dev, "min_vt_div: min_vt_clk_div: %u\n", min_vt_div);
|
||
|
|
||
|
max_vt_div = limits->vt.max_sys_clk_div * limits->vt.max_pix_clk_div;
|
||
|
dev_dbg(dev, "max_vt_div: %u\n", max_vt_div);
|
||
|
max_vt_div = min(max_vt_div,
|
||
|
DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
|
||
|
limits->vt.min_pix_clk_freq_hz));
|
||
|
dev_dbg(dev, "max_vt_div: min_vt_pix_clk_freq_hz: %u\n",
|
||
|
max_vt_div);
|
||
|
|
||
|
/*
|
||
|
* Find limitsits for sys_clk_div. Not all values are possible
|
||
|
* with all values of pix_clk_div.
|
||
|
*/
|
||
|
min_sys_div = limits->vt.min_sys_clk_div;
|
||
|
dev_dbg(dev, "min_sys_div: %u\n", min_sys_div);
|
||
|
min_sys_div = max(min_sys_div,
|
||
|
DIV_ROUND_UP(min_vt_div,
|
||
|
limits->vt.max_pix_clk_div));
|
||
|
dev_dbg(dev, "min_sys_div: max_vt_pix_clk_div: %u\n", min_sys_div);
|
||
|
min_sys_div = max(min_sys_div,
|
||
|
pll->pll_op_clk_freq_hz
|
||
|
/ limits->vt.max_sys_clk_freq_hz);
|
||
|
dev_dbg(dev, "min_sys_div: max_pll_op_clk_freq_hz: %u\n", min_sys_div);
|
||
|
min_sys_div = clk_div_even_up(min_sys_div);
|
||
|
dev_dbg(dev, "min_sys_div: one or even: %u\n", min_sys_div);
|
||
|
|
||
|
max_sys_div = limits->vt.max_sys_clk_div;
|
||
|
dev_dbg(dev, "max_sys_div: %u\n", max_sys_div);
|
||
|
max_sys_div = min(max_sys_div,
|
||
|
DIV_ROUND_UP(max_vt_div,
|
||
|
limits->vt.min_pix_clk_div));
|
||
|
dev_dbg(dev, "max_sys_div: min_vt_pix_clk_div: %u\n", max_sys_div);
|
||
|
max_sys_div = min(max_sys_div,
|
||
|
DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
|
||
|
limits->vt.min_pix_clk_freq_hz));
|
||
|
dev_dbg(dev, "max_sys_div: min_vt_pix_clk_freq_hz: %u\n", max_sys_div);
|
||
|
|
||
|
/*
|
||
|
* Find pix_div such that a legal pix_div * sys_div results
|
||
|
* into a value which is not smaller than div, the desired
|
||
|
* divisor.
|
||
|
*/
|
||
|
for (vt_div = min_vt_div; vt_div <= max_vt_div;
|
||
|
vt_div += 2 - (vt_div & 1)) {
|
||
|
for (sys_div = min_sys_div;
|
||
|
sys_div <= max_sys_div;
|
||
|
sys_div += 2 - (sys_div & 1)) {
|
||
|
uint16_t pix_div = DIV_ROUND_UP(vt_div, sys_div);
|
||
|
|
||
|
if (pix_div < limits->vt.min_pix_clk_div
|
||
|
|| pix_div > limits->vt.max_pix_clk_div) {
|
||
|
dev_dbg(dev,
|
||
|
"pix_div %u too small or too big (%u--%u)\n",
|
||
|
pix_div,
|
||
|
limits->vt.min_pix_clk_div,
|
||
|
limits->vt.max_pix_clk_div);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* Check if this one is better. */
|
||
|
if (pix_div * sys_div
|
||
|
<= roundup(min_vt_div, best_pix_div))
|
||
|
best_pix_div = pix_div;
|
||
|
}
|
||
|
if (best_pix_div < INT_MAX >> 1)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
pll->vt.sys_clk_div = DIV_ROUND_UP(min_vt_div, best_pix_div);
|
||
|
pll->vt.pix_clk_div = best_pix_div;
|
||
|
|
||
|
pll->vt.sys_clk_freq_hz =
|
||
|
pll->pll_op_clk_freq_hz / pll->vt.sys_clk_div;
|
||
|
pll->vt.pix_clk_freq_hz =
|
||
|
pll->vt.sys_clk_freq_hz / pll->vt.pix_clk_div;
|
||
|
|
||
|
out_skip_vt_calc:
|
||
|
pll->pixel_rate_csi =
|
||
|
op_pll->pix_clk_freq_hz * lane_op_clock_ratio;
|
||
|
pll->pixel_rate_pixel_array = pll->vt.pix_clk_freq_hz;
|
||
|
|
||
|
return check_all_bounds(dev, limits, op_limits, pll, op_pll);
|
||
|
}
|
||
|
|
||
|
int smiapp_pll_calculate(struct device *dev,
|
||
|
const struct smiapp_pll_limits *limits,
|
||
|
struct smiapp_pll *pll)
|
||
|
{
|
||
|
const struct smiapp_pll_branch_limits *op_limits = &limits->op;
|
||
|
struct smiapp_pll_branch *op_pll = &pll->op;
|
||
|
uint16_t min_pre_pll_clk_div;
|
||
|
uint16_t max_pre_pll_clk_div;
|
||
|
uint32_t lane_op_clock_ratio;
|
||
|
uint32_t mul, div;
|
||
|
unsigned int i;
|
||
|
int rval = -EINVAL;
|
||
|
|
||
|
if (pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS) {
|
||
|
/*
|
||
|
* If there's no OP PLL at all, use the VT values
|
||
|
* instead. The OP values are ignored for the rest of
|
||
|
* the PLL calculation.
|
||
|
*/
|
||
|
op_limits = &limits->vt;
|
||
|
op_pll = &pll->vt;
|
||
|
}
|
||
|
|
||
|
if (pll->flags & SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE)
|
||
|
lane_op_clock_ratio = pll->csi2.lanes;
|
||
|
else
|
||
|
lane_op_clock_ratio = 1;
|
||
|
dev_dbg(dev, "lane_op_clock_ratio: %u\n", lane_op_clock_ratio);
|
||
|
|
||
|
dev_dbg(dev, "binning: %ux%u\n", pll->binning_horizontal,
|
||
|
pll->binning_vertical);
|
||
|
|
||
|
switch (pll->bus_type) {
|
||
|
case SMIAPP_PLL_BUS_TYPE_CSI2:
|
||
|
/* CSI transfers 2 bits per clock per lane; thus times 2 */
|
||
|
pll->pll_op_clk_freq_hz = pll->link_freq * 2
|
||
|
* (pll->csi2.lanes / lane_op_clock_ratio);
|
||
|
break;
|
||
|
case SMIAPP_PLL_BUS_TYPE_PARALLEL:
|
||
|
pll->pll_op_clk_freq_hz = pll->link_freq * pll->bits_per_pixel
|
||
|
/ DIV_ROUND_UP(pll->bits_per_pixel,
|
||
|
pll->parallel.bus_width);
|
||
|
break;
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* Figure out limits for pre-pll divider based on extclk */
|
||
|
dev_dbg(dev, "min / max pre_pll_clk_div: %u / %u\n",
|
||
|
limits->min_pre_pll_clk_div, limits->max_pre_pll_clk_div);
|
||
|
max_pre_pll_clk_div =
|
||
|
min_t(uint16_t, limits->max_pre_pll_clk_div,
|
||
|
clk_div_even(pll->ext_clk_freq_hz /
|
||
|
limits->min_pll_ip_freq_hz));
|
||
|
min_pre_pll_clk_div =
|
||
|
max_t(uint16_t, limits->min_pre_pll_clk_div,
|
||
|
clk_div_even_up(
|
||
|
DIV_ROUND_UP(pll->ext_clk_freq_hz,
|
||
|
limits->max_pll_ip_freq_hz)));
|
||
|
dev_dbg(dev, "pre-pll check: min / max pre_pll_clk_div: %u / %u\n",
|
||
|
min_pre_pll_clk_div, max_pre_pll_clk_div);
|
||
|
|
||
|
i = gcd(pll->pll_op_clk_freq_hz, pll->ext_clk_freq_hz);
|
||
|
mul = div_u64(pll->pll_op_clk_freq_hz, i);
|
||
|
div = pll->ext_clk_freq_hz / i;
|
||
|
dev_dbg(dev, "mul %u / div %u\n", mul, div);
|
||
|
|
||
|
min_pre_pll_clk_div =
|
||
|
max_t(uint16_t, min_pre_pll_clk_div,
|
||
|
clk_div_even_up(
|
||
|
DIV_ROUND_UP(mul * pll->ext_clk_freq_hz,
|
||
|
limits->max_pll_op_freq_hz)));
|
||
|
dev_dbg(dev, "pll_op check: min / max pre_pll_clk_div: %u / %u\n",
|
||
|
min_pre_pll_clk_div, max_pre_pll_clk_div);
|
||
|
|
||
|
for (pll->pre_pll_clk_div = min_pre_pll_clk_div;
|
||
|
pll->pre_pll_clk_div <= max_pre_pll_clk_div;
|
||
|
pll->pre_pll_clk_div += 2 - (pll->pre_pll_clk_div & 1)) {
|
||
|
rval = __smiapp_pll_calculate(dev, limits, op_limits, pll,
|
||
|
op_pll, mul, div,
|
||
|
lane_op_clock_ratio);
|
||
|
if (rval)
|
||
|
continue;
|
||
|
|
||
|
print_pll(dev, pll);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
dev_info(dev, "unable to compute pre_pll divisor\n");
|
||
|
return rval;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(smiapp_pll_calculate);
|
||
|
|
||
|
MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
|
||
|
MODULE_DESCRIPTION("Generic SMIA/SMIA++ PLL calculator");
|
||
|
MODULE_LICENSE("GPL");
|