tegrakernel/kernel/kernel-4.9/drivers/thermal/tegra/soctherm.c

2968 lines
81 KiB
C

/*
* Copyright (c) 2014 - 2019, NVIDIA CORPORATION. All rights reserved.
*
* Author:
* Mikko Perttunen <mperttunen@nvidia.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/debugfs.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/clk/tegra.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/leds.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/thermal.h>
#include <linux/tegra_soctherm.h>
#include <dt-bindings/thermal/tegra124-soctherm.h>
#include "../thermal_core.h"
#include "soctherm.h"
#define SENSOR_CONFIG0 0
#define SENSOR_CONFIG0_STOP BIT(0)
#define SENSOR_CONFIG0_CPTR_OVER BIT(2)
#define SENSOR_CONFIG0_OVER BIT(3)
#define SENSOR_CONFIG0_TCALC_OVER BIT(4)
#define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8)
#define SENSOR_CONFIG0_TALL_SHIFT 8
#define SENSOR_CONFIG1 4
#define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff
#define SENSOR_CONFIG1_TSAMPLE_SHIFT 0
#define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15)
#define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15
#define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24)
#define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24
#define SENSOR_CONFIG1_TEMP_ENABLE BIT(31)
#define TS_TEMP_SW_OVERRIDE 0x1d8
/*
* SENSOR_CONFIG2 is defined in soctherm.h
* because, it will be used by tegra_soctherm_fuse.c
*/
#define SENSOR_STATUS0 0xc
#define SENSOR_STATUS0_VALID_MASK BIT(31)
#define SENSOR_STATUS0_CAPTURE_MASK 0xffff
#define SENSOR_STATUS1 0x10
#define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31)
#define SENSOR_STATUS1_TEMP_MASK 0xffff
#define READBACK_VALUE_MASK 0xff00
#define READBACK_VALUE_SHIFT 8
#define READBACK_ADD_HALF BIT(7)
#define READBACK_NEGATE BIT(0)
/*
* THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
* because it will be used by tegraxxx_soctherm.c
*/
#define THERMCTL_LVL0_CPU0_EN_MASK BIT(8)
#define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5)
#define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1
#define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2
#define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3)
#define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1
#define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2
#define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2)
#define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3
#define THERMCTL_LVL0_UP_STATS 0x10
#define THERMCTL_LVL0_DN_STATS 0x14
#define THERMCTL_STATS_CTL 0x94
#define STATS_CTL_CLR_DN 0x8
#define STATS_CTL_EN_DN 0x4
#define STATS_CTL_CLR_UP 0x2
#define STATS_CTL_EN_UP 0x1
#define THERMCTL_INTR_STATUS 0x84
#define THERMCTL_INTR_EN 0x88
#define THERMCTL_INTR_DISABLE 0x8c
#define TH_INTR_UP_DN_EN 0x3
#define TH_INTR_MD0_MASK BIT(25)
#define TH_INTR_MU0_MASK BIT(24)
#define TH_INTR_GD0_MASK BIT(17)
#define TH_INTR_GU0_MASK BIT(16)
#define TH_INTR_CD0_MASK BIT(9)
#define TH_INTR_CU0_MASK BIT(8)
#define TH_INTR_PD0_MASK BIT(1)
#define TH_INTR_PU0_MASK BIT(0)
#define TH_INTR_IGNORE_MASK 0xFCFCFCFC
#define THROT_GLOBAL_CFG 0x400
#define THROT_GLOBAL_ENB_MASK BIT(0)
#define CPU_PSKIP_STATUS 0x418
#define XPU_PSKIP_STATUS_M_MASK (0xff << 12)
#define XPU_PSKIP_STATUS_N_MASK (0xff << 4)
#define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1)
#define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0)
#define THROT_PRIORITY_LOCK 0x424
#define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff
#define THROT_STATUS 0x428
#define THROT_STATUS_BREACH_MASK BIT(12)
#define THROT_STATUS_STATE_MASK (0xff << 4)
#define THROT_STATUS_ENABLED_MASK BIT(0)
#define THROT_PSKIP_CTRL_LITE_CPU 0x430
#define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31)
#define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8)
#define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff
#define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16)
#define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8)
#define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7
#define THROT_VECT_NONE 0x0 /* 3'b000 */
#define THROT_VECT_LOW 0x1 /* 3'b001 */
#define THROT_VECT_MED 0x3 /* 3'b011 */
#define THROT_VECT_HIGH 0x7 /* 3'b111 */
#define THROT_PSKIP_RAMP_LITE_CPU 0x434
#define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31)
#define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8)
#define THROT_PSKIP_RAMP_STEP_MASK 0xff
#define THROT_PRIORITY_LITE 0x444
#define THROT_PRIORITY_LITE_PRIO_MASK 0xff
#define THROT_DELAY_LITE 0x448
#define THROT_DELAY_LITE_DELAY_MASK 0xff
#define OC1_CFG 0x310
#define OC1_CFG_LONG_LATENCY_MASK BIT(6)
#define OC1_CFG_HW_RESTORE_MASK BIT(5)
#define OC1_CFG_PWR_GOOD_MASK_MASK BIT(4)
#define OC1_CFG_THROTTLE_MODE_MASK (0x3 << 2)
#define OC1_CFG_ALARM_POLARITY_MASK BIT(1)
#define OC1_CFG_EN_THROTTLE_MASK BIT(0)
#define OC1_CNT_THRESHOLD 0x314
#define OC1_THROTTLE_PERIOD 0x318
#define OC1_ALARM_COUNT 0x31c
#define OC1_FILTER 0x320
#define OC1_STATS 0x3a8
#define OC2_STATS 0x3ac
#define OC3_STATS 0x3b0
#define OC4_STATS 0x3b4
#define OC5_STATS 0x3b8
#define OC_INTR_STATUS 0x39c
#define OC_INTR_ENABLE 0x3a0
#define OC_INTR_DISABLE 0x3a4
#define OC_STATS_CTL 0x3c4
#define OC_STATS_CTL_CLR_ALL 0x2
#define OC_STATS_CTL_EN_ALL 0x1
#define OC_INTR_OC1_MASK BIT(0)
#define OC_INTR_OC2_MASK BIT(1)
#define OC_INTR_OC3_MASK BIT(2)
#define OC_INTR_OC4_MASK BIT(3)
#define OC_INTR_OC5_MASK BIT(4)
/* car register offsets needed for enabling HW throttling */
#define CAR_SUPER_CCLKG_DIVIDER 0x36c
#define CDIVG_USE_THERM_CONTROLS_MASK BIT(30)
/* ccroc register offsets needed for enabling HW throttling for Tegra132 */
#define CCROC_SUPER_CCLKG_DIVIDER 0x024
#define CCROC_GLOBAL_CFG 0x148
#define CCROC_THROT_PSKIP_RAMP_CPU 0x150
#define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31)
#define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8)
#define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff
#define CCROC_THROT_PSKIP_CTRL_CPU 0x154
#define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31)
#define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8)
#define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff
/* get val from register(r) mask bits(m) */
#define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1))
/* set val(v) to mask bits(m) of register(r) */
#define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \
(((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
/* get dividend from the depth */
#define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1)
/* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-sochterm.h
* level vector
* NONE 3'b000
* LOW 3'b001
* MED 3'b011
* HIGH 3'b111
*/
#define THROT_LEVEL_TO_DEPTH(level) ((0x1 << (level)) - 1)
/* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
#define THROT_OFFSET 0x30
#define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \
(THROT_OFFSET * throt) + (8 * dev))
#define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \
(THROT_OFFSET * throt) + (8 * dev))
/* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
#define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \
(THROT_OFFSET * throt))
#define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \
(THROT_OFFSET * throt))
#define ALARM_OFFSET 0x14
#define ALARM_CFG(throt) (OC1_CFG + \
(ALARM_OFFSET * (throt - THROTTLE_OC1)))
#define ALARM_CNT_THRESHOLD(throt) (OC1_CNT_THRESHOLD + \
(ALARM_OFFSET * (throt - THROTTLE_OC1)))
#define ALARM_THROTTLE_PERIOD(throt) (OC1_THROTTLE_PERIOD + \
(ALARM_OFFSET * (throt - THROTTLE_OC1)))
#define ALARM_ALARM_COUNT(throt) (OC1_ALARM_COUNT + \
(ALARM_OFFSET * (throt - THROTTLE_OC1)))
#define ALARM_FILTER(throt) (OC1_FILTER + \
(ALARM_OFFSET * (throt - THROTTLE_OC1)))
#define ALARM_STATS(throt) (OC1_STATS + \
(4 * (throt - THROTTLE_OC1)))
/* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
#define CCROC_THROT_OFFSET 0x0c
#define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \
(CCROC_THROT_OFFSET * vect))
#define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \
(CCROC_THROT_OFFSET * vect))
/* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
#define THERMCTL_LVL_REGS_SIZE 0x20
#define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
#define OC_THROTTLE_MODE_DISABLED 0
#define OC_THROTTLE_MODE_BRIEF 2
static const int min_low_temp = -127000;
static const int max_high_temp = 127000;
enum soctherm_throttle_id {
THROTTLE_LIGHT = 0,
THROTTLE_HEAVY,
THROTTLE_OC1,
THROTTLE_OC2,
THROTTLE_OC3,
THROTTLE_OC4,
THROTTLE_OC5, /* OC5 is reserved for WAR to Bug 1415030 */
THROTTLE_SIZE,
};
enum soctherm_oc_irq_id {
TEGRA_SOC_OC_IRQ_1,
TEGRA_SOC_OC_IRQ_2,
TEGRA_SOC_OC_IRQ_3,
TEGRA_SOC_OC_IRQ_4,
TEGRA_SOC_OC_IRQ_5,
TEGRA_SOC_OC_IRQ_MAX,
};
enum soctherm_throttle_dev_id {
THROTTLE_DEV_CPU = 0,
THROTTLE_DEV_GPU,
THROTTLE_DEV_SIZE,
};
static const char *const throt_names[] = {
[THROTTLE_LIGHT] = "light",
[THROTTLE_HEAVY] = "heavy",
[THROTTLE_OC1] = "oc1",
[THROTTLE_OC2] = "oc2",
[THROTTLE_OC3] = "oc3",
[THROTTLE_OC4] = "oc4",
[THROTTLE_OC5] = "oc5",
};
struct tegra_soctherm;
struct tegra_thermctl_zone {
void __iomem *reg;
struct device *dev;
struct tegra_soctherm *ts;
struct thermal_zone_device *tz;
const struct tegra_tsensor_group *sg;
};
struct soctherm_oc_cfg {
u32 active_low;
u32 throt_period;
u32 alarm_cnt_thresh;
u32 alarm_filter;
u32 mode;
bool intr_en;
u64 oc_cnt;
};
struct soctherm_throt_cfg {
struct soctherm_oc_cfg oc_cfg;
const char *name;
unsigned int id;
u8 cpu_throt_level;
u32 cpu_throt_depth;
u32 gpu_throt_level;
struct thermal_cooling_device *cdev;
bool init;
u8 priority;
};
struct tegra_soctherm {
struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
struct mutex thermctl_lock;
struct reset_control *reset;
struct clk *clock_tsensor;
struct clk *clock_soctherm;
void __iomem *regs;
void __iomem *ccroc_regs;
u32 *calib;
struct thermal_zone_device **thermctl_tzs;
struct tegra_soctherm_soc *soc;
struct dentry *debugfs_dir;
int thermal_irq;
int edp_irq;
};
struct soctherm_oc_irq_chip_data {
struct mutex irq_lock; /* serialize OC IRQs */
struct irq_chip irq_chip;
struct irq_domain *domain;
int irq_enable;
};
struct tsensor_hw_pllx_offset {
bool cpu_rail_low_voltage;
bool gpu_rail_low_voltage;
void __iomem *sensor_valid_reg;
};
static struct soctherm_oc_irq_chip_data soc_irq_cdata;
static struct tsensor_hw_pllx_offset hw_pllx;
static DEFINE_SPINLOCK(soctherm_lock);
static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt);
static void throttlectl_gpu_level(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt);
/**
* ccroc_writel() - writes a value to a CCROC register
* @ts: pointer to a struct tegra_soctherm
* @v: the value to write
* @reg: the register offset
*
* Writes @v to @reg. No return value.
*/
static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
{
writel(value, (ts->ccroc_regs + reg));
}
/**
* ccroc_readl() - reads specified register from CCROC IP block
* @ts: pointer to a struct tegra_soctherm
* @reg: register address to be read
*
* Return: the value of the register
*/
static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
{
return readl(ts->ccroc_regs + reg);
}
/**
* clear_oc_counters() - clear the counters of all oc events
* @ts: pointer to a struct tegra_soctherm
*
* No return value.
*/
static void clear_oc_counters(struct tegra_soctherm *ts)
{
writel(OC_STATS_CTL_CLR_ALL | OC_STATS_CTL_EN_ALL,
(ts->regs + OC_STATS_CTL));
}
static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
{
const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
void __iomem *base = tegra->regs + sensor->base;
unsigned int val;
val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
writel(val, base + SENSOR_CONFIG0);
val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
val |= SENSOR_CONFIG1_TEMP_ENABLE;
writel(val, base + SENSOR_CONFIG1);
writel(tegra->calib[i], base + SENSOR_CONFIG2);
}
#ifdef CONFIG_DEBUG_FS
/**
* translate_temp_reverse() - Translates the given temperature from two's
* complement to the signed magnitude form used in SOC_THERM registers
* @temp: The temperature to be translated
*
* The register value returned will have the following bit assignment:
* 15:7 magnitude of temperature in (1/2 or 1 degree precision) centigrade
* 0 the sign bit of the temperature
*
* This function is the inverse of the temp_translate() function
*
* Return: The register value.
*/
static u32 translate_temp_reverse(u32 temp)
{
int sign, low_bit;
u32 lsb = 0, abs = 0, reg = 0;
sign = (temp > 0 ? 1 : -1);
low_bit = (sign > 0 ? 0 : 1);
temp *= sign;
lsb = ((temp % 1000) > 0) ? 1 : 0;
abs = (temp - 500 * lsb) / 1000;
abs &= 0xff;
reg = ((abs << 8) | (lsb << 7) | low_bit);
return reg;
}
#endif
/*
* Translate from soctherm readback format to millicelsius.
* The soctherm readback format in bits is as follows:
* TTTTTTTT H______N
* where T's contain the temperature in Celsius,
* H denotes an addition of 0.5 Celsius and N denotes negation
* of the final value.
*/
static int translate_temp(u16 val)
{
int t;
t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
if (val & READBACK_ADD_HALF)
t += 500;
if (val & READBACK_NEGATE)
t *= -1;
return t;
}
static int tegra_thermctl_get_temp(void *data, int *out_temp)
{
struct tegra_thermctl_zone *zone = data;
u32 val;
val = readl(zone->reg);
val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
*out_temp = translate_temp(val);
return 0;
}
/**
* enforce_temp_range() - check and enforce temperature range [min, max]
* @trip_temp: the trip temperature to check
*
* Checks and enforces the permitted temperature range that SOC_THERM
* HW can support This is
* done while taking care of precision.
*
* Return: The precision adjusted capped temperature in millicelsius.
*/
static int enforce_temp_range(struct device *dev, int trip_temp)
{
int temp;
temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
if (temp != trip_temp)
dev_info(dev, "soctherm: trip temperature %d forced to %d\n",
trip_temp, temp);
return temp;
}
/**
* thermtrip_program() - Configures the hardware to shut down the
* system if a given sensor group reaches a given temperature
* @dev: ptr to the struct device for the SOC_THERM IP block
* @sg: pointer to the sensor group to set the thermtrip temperature for
* @trip_temp: the temperature in millicelsius to trigger the thermal trip at
*
* Sets the thermal trip threshold of the given sensor group to be the
* @trip_temp. If this threshold is crossed, the hardware will shut
* down.
*
* Note that, although @trip_temp is specified in millicelsius, the
* hardware is programmed in degrees Celsius.
*
* Return: 0 upon success, or %-EINVAL upon failure.
*/
static int thermtrip_program(struct device *dev,
const struct tegra_tsensor_group *sg,
int trip_temp)
{
struct tegra_soctherm *ts = dev_get_drvdata(dev);
int temp;
u32 r;
if (!sg || !sg->thermtrip_threshold_mask)
return -EINVAL;
temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
return 0;
}
/**
* throttrip_program() - Configures the hardware to throttle the
* pulse if a given sensor group reaches a given temperature
* @dev: ptr to the struct device for the SOC_THERM IP block
* @sg: pointer to the sensor group to set the thermtrip temperature for
* @stc: pointer to the throttle need to be triggered
* @trip_temp: the temperature in millicelsius to trigger the thermal trip at
*
* Sets the thermal trip threshold and throttle event of the given sensor
* group. If this threshold is crossed, the hardware will trigger the
* throttle.
*
* Note that, although @trip_temp is specified in millicelsius, the
* hardware is programmed in degrees Celsius.
*
* Return: 0 upon success, or %-EINVAL upon failure.
*/
static int throttrip_program(struct device *dev,
const struct tegra_tsensor_group *sg,
struct soctherm_throt_cfg *stc,
int trip_temp)
{
struct tegra_soctherm *ts;
int temp, cpu_throt, gpu_throt;
unsigned int throt;
u32 r, reg_off;
if (!dev || !sg || !stc || !stc->init)
return -EINVAL;
ts = dev_get_drvdata(dev);
temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
/* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
throt = stc->id;
reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
if (throt == THROTTLE_LIGHT) {
cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
} else {
cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
if (throt != THROTTLE_HEAVY)
dev_warn(dev,
"invalid throt id %d - assuming HEAVY",
throt);
}
r = readl(ts->regs + reg_off);
r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
writel(r, ts->regs + reg_off);
return 0;
}
static struct soctherm_throt_cfg *
find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
{
unsigned int i;
for (i = 0; ts->throt_cfgs[i].name; i++)
if (!strcmp(ts->throt_cfgs[i].name, name))
return &ts->throt_cfgs[i];
return NULL;
}
static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
{
int i, temp = min_low_temp;
struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
if (tt) {
for (i = 0; i < ts->soc->num_ttgs; i++) {
if (tt[i].id == id)
return tt[i].temp;
}
}
return temp;
}
static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp)
{
struct tegra_thermctl_zone *zone = data;
struct thermal_zone_device *tz = zone->tz;
struct tegra_soctherm *ts = zone->ts;
const struct tegra_tsensor_group *sg = zone->sg;
struct device *dev = zone->dev;
enum thermal_trip_type type;
int ret;
if (!tz)
return -EINVAL;
ret = tz->ops->get_trip_type(tz, trip, &type);
if (ret)
return ret;
if (type == THERMAL_TRIP_CRITICAL) {
/* dont allow if soctherm has thermtrips property in DT */
if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
return thermtrip_program(dev, sg, temp);
else
return 0;
} else if (type == THERMAL_TRIP_HOT) {
int i;
for (i = 0; i < THROTTLE_SIZE; i++) {
struct thermal_cooling_device *cdev;
struct soctherm_throt_cfg *stc;
if (!ts->throt_cfgs[i].init)
continue;
cdev = ts->throt_cfgs[i].cdev;
if (get_thermal_instance(tz, cdev, trip))
stc = find_throttle_cfg_by_name(ts, cdev->type);
else
continue;
return throttrip_program(dev, sg, stc, temp);
}
}
return 0;
}
static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
{
u32 r;
/* multiple zones could be handling and setting trips at once */
mutex_lock(&zn->ts->thermctl_lock);
r = readl(zn->ts->regs + THERMCTL_INTR_EN);
r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
writel(r, zn->ts->regs + THERMCTL_INTR_EN);
mutex_unlock(&zn->ts->thermctl_lock);
}
static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
{
u32 r;
/* multiple zones could be handling and setting trips at once */
mutex_lock(&zn->ts->thermctl_lock);
r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
mutex_unlock(&zn->ts->thermctl_lock);
}
static int tegra_thermctl_set_trips(void *data, int lo, int hi)
{
struct tegra_thermctl_zone *zone = data;
u32 r;
thermal_irq_disable(zone);
r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
dev_dbg(zone->dev, "tegra_thermctl_set_trips hi:%d, lo:%d\n", hi, lo);
r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
thermal_irq_enable(zone);
return 0;
}
static int tegra_thermctl_get_trend(void *data, int trip,
enum thermal_trend *trend)
{
struct tegra_thermctl_zone *zone = data;
int ret;
int trip_temp, temp, last_temp;
if (!zone->tz)
return 0;
ret = zone->tz->ops->get_trip_temp(zone->tz, trip, &trip_temp);
if (ret)
return ret;
mutex_lock(&zone->tz->lock);
temp = zone->tz->temperature;
last_temp = zone->tz->last_temperature;
mutex_unlock(&zone->tz->lock);
if (temp > trip_temp) {
if (temp >= last_temp)
*trend = THERMAL_TREND_RAISING;
else
*trend = THERMAL_TREND_STABLE;
} else if (temp < trip_temp) {
*trend = THERMAL_TREND_DROPPING;
} else {
*trend = THERMAL_TREND_STABLE;
}
return 0;
}
static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = {
.get_temp = tegra_thermctl_get_temp,
.set_trip_temp = tegra_thermctl_set_trip_temp,
.set_trips = tegra_thermctl_set_trips,
.get_trend = tegra_thermctl_get_trend,
};
static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
{
int ntrips, i, ret;
enum thermal_trip_type type;
ntrips = of_thermal_get_ntrips(tz);
if (ntrips <= 0)
return -EINVAL;
for (i = 0; i < ntrips; i++) {
ret = tz->ops->get_trip_type(tz, i, &type);
if (ret)
return -EINVAL;
if (type == THERMAL_TRIP_HOT) {
ret = tz->ops->get_trip_temp(tz, i, temp);
if (!ret)
*trip = i;
return ret;
}
}
return -EINVAL;
}
/**
* tegra_soctherm_set_hwtrips() - set HW trip point from DT data
* @dev: struct device * of the SOC_THERM instance
*
* Configure the SOC_THERM HW trip points, setting "THERMTRIP"
* "THROTTLE" trip points , using "critical" or "hot" type trip_temp
* from thermal zone.
* After they have been configured, THERMTRIP or THROTTLE will take
* action when the configured SoC thermal sensor group reaches a
* certain temperature.
*
* Return: 0 upon success, or a negative error code on failure.
* "Success" does not mean that trips was enabled; it could also
* mean that no node was found in DT.
* THERMTRIP has been enabled successfully when a message similar to
* this one appears on the serial console:
* "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
* THROTTLE has been enabled successfully when a message similar to
* this one appears on the serial console:
* ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
*/
static int tegra_soctherm_set_hwtrips(struct device *dev,
const struct tegra_tsensor_group *sg,
struct thermal_zone_device *tz)
{
struct tegra_soctherm *ts = dev_get_drvdata(dev);
struct soctherm_throt_cfg *stc;
int i, trip, temperature, ret;
temperature = tsensor_group_thermtrip_get(ts, sg->id);
if (min_low_temp == temperature)
if (tz->ops->get_crit_temp(tz, &temperature))
temperature = max_high_temp;
dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
sg->name, temperature);
ret = thermtrip_program(dev, sg, temperature);
if (ret) {
dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
return ret;
}
ret = get_hot_temp(tz, &trip, &temperature);
if (ret) {
dev_info(dev, "throttrip: %s: missing hot temperature\n",
sg->name);
return 0;
}
for (i = 0; i < THROTTLE_OC1; i++) {
struct thermal_cooling_device *cdev;
if (!ts->throt_cfgs[i].init)
continue;
cdev = ts->throt_cfgs[i].cdev;
if (get_thermal_instance(tz, cdev, trip))
stc = find_throttle_cfg_by_name(ts, cdev->type);
else
continue;
ret = throttrip_program(dev, sg, stc, temperature);
if (ret) {
dev_err(dev, "throttrip: %s: error during enable\n",
sg->name);
return ret;
}
dev_info(dev,
"throttrip: will throttle when %s reaches %d mC\n",
sg->name, temperature);
break;
}
if (i == THROTTLE_SIZE)
dev_info(dev, "throttrip: %s: missing throttle cdev\n",
sg->name);
return 0;
}
static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
{
struct tegra_soctherm *ts = dev_id;
u32 r;
/* Case for no lock:
* Although interrupts are enabled in set_trips, there is still no need
* to lock here because the interrupts are disabled before programming
* new trip points. Hence there cant be a interrupt on the same sensor.
* An interrupt can however occur on a sensor while trips are being
* programmed on a different one. This beign a LEVEL interrupt won't
* cause a new interrupt but this is taken care of by the re-reading of
* the STATUS register in the thread function.
*/
r = readl(ts->regs + THERMCTL_INTR_STATUS);
writel(r, ts->regs + THERMCTL_INTR_DISABLE);
return IRQ_WAKE_THREAD;
}
/**
* soctherm_thermal_isr_thread() - Handles a thermal interrupt request
* @irq: The interrupt number being requested; not used
* @dev_id: Opaque pointer to tegra_soctherm;
*
* Clears the interrupt status register if there are expected
* interrupt bits set.
* The interrupt(s) are then handled by updating the corresponding
* thermal zones.
*
* An error is logged if any unexpected interrupt bits are set.
*
* Disabled interrupts are re-enabled.
*
* Return: %IRQ_HANDLED. Interrupt was handled and no further processing
* is needed.
*/
static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
{
struct tegra_soctherm *ts = dev_id;
struct thermal_zone_device *tz;
u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
st = readl(ts->regs + THERMCTL_INTR_STATUS);
/* deliberately clear expected interrupts handled in SW */
cp |= st & TH_INTR_CD0_MASK;
cp |= st & TH_INTR_CU0_MASK;
gp |= st & TH_INTR_GD0_MASK;
gp |= st & TH_INTR_GU0_MASK;
pl |= st & TH_INTR_PD0_MASK;
pl |= st & TH_INTR_PU0_MASK;
me |= st & TH_INTR_MD0_MASK;
me |= st & TH_INTR_MU0_MASK;
ex |= cp | gp | pl | me;
if (ex) {
writel(ex, ts->regs + THERMCTL_INTR_STATUS);
st &= ~ex;
if (cp) {
tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED);
}
if (gp) {
tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED);
}
if (pl) {
tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED);
}
if (me) {
tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
thermal_zone_device_update(tz, THERMAL_EVENT_UNSPECIFIED);
}
}
/* deliberately ignore expected interrupts NOT handled in SW */
ex |= TH_INTR_IGNORE_MASK;
st &= ~ex;
if (st) {
/* Whine about any other unexpected INTR bits still set */
pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
writel(st, ts->regs + THERMCTL_INTR_STATUS);
}
return IRQ_HANDLED;
}
/**
* soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
* @alarm: The soctherm throttle id
* @enable: Flag indicating enable the soctherm over-current
* interrupt or disable it
*
* Enables a specific over-current pins @alarm to raise an interrupt if the flag
* is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
*/
static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
enum soctherm_throttle_id alarm,
bool enable)
{
u32 r;
if (!enable)
return;
r = readl(ts->regs + OC_INTR_ENABLE);
switch (alarm) {
case THROTTLE_OC1:
r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
break;
case THROTTLE_OC2:
r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
break;
case THROTTLE_OC3:
r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
break;
case THROTTLE_OC4:
r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
break;
case THROTTLE_OC5:
r = REG_SET_MASK(r, OC_INTR_OC5_MASK, 1);
break;
default:
r = 0;
break;
}
writel(r, ts->regs + OC_INTR_ENABLE);
}
/**
* soctherm_handle_alarm() - Handles soctherm alarms
* @alarm: The soctherm throttle id
* @tegra_soctherm: soctherm struct
*
* "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
* a warning or informative message.
*
* Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
*/
static int soctherm_handle_alarm(enum soctherm_throttle_id alarm,
struct tegra_soctherm *ts)
{
struct soctherm_throt_cfg *throt_cfgs = ts->throt_cfgs;
int rv = -EINVAL, val = 0;
switch (alarm) {
case THROTTLE_OC1:
pr_debug("soctherm: Successfully handled OC1 alarm\n");
/* add OC1 alarm handling code here */
val = readl(ts->regs + OC1_STATS);
rv = 0;
break;
case THROTTLE_OC2:
pr_debug("soctherm: Successfully handled OC2 alarm\n");
/* TODO: add OC2 alarm handling code here */
val = readl(ts->regs + OC2_STATS);
rv = 0;
break;
case THROTTLE_OC3:
pr_debug("soctherm: Successfully handled OC3 alarm\n");
/* add OC3 alarm handling code here */
val = readl(ts->regs + OC3_STATS);
rv = 0;
break;
case THROTTLE_OC4:
pr_debug("soctherm: Successfully handled OC4 alarm\n");
/* TODO: add OC4 alarm handling code here */
val = readl(ts->regs + OC4_STATS);
rv = 0;
break;
case THROTTLE_OC5:
pr_debug("soctherm: Successfully handled OC5 alarm\n");
/* TODO: add OC5 alarm handling code here */
val = readl(ts->regs + OC5_STATS);
rv = 0;
break;
default:
break;
}
if ((alarm >= THROTTLE_OC1) && (alarm <= THROTTLE_OC5)) {
throt_cfgs[alarm].oc_cfg.oc_cnt += val;
}
if (rv)
pr_err("soctherm: ERROR in handling %s alarm\n",
throt_names[alarm]);
return rv;
}
/**
* soctherm_edp_isr_thread() - log an over-current interrupt request
* @irq: OC irq number. Currently not being used. See description
* @arg: a void pointer for callback, currently not being used
*
* Over-current events are handled in hardware. This function is called to log
* and handle any OC events that happened. Additionally, it checks every
* over-current interrupt registers for registers are set but
* was not expected (i.e. any discrepancy in interrupt status) by the function,
* the discrepancy will logged.
*
* Return: %IRQ_HANDLED
*/
static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
{
struct tegra_soctherm *ts = arg;
u32 st, ex, oc1, oc2, oc3, oc4, oc5;
static unsigned long j;
st = readl(ts->regs + OC_INTR_STATUS);
/* deliberately clear expected interrupts handled in SW */
oc1 = st & OC_INTR_OC1_MASK;
oc2 = st & OC_INTR_OC2_MASK;
oc3 = st & OC_INTR_OC3_MASK;
oc4 = st & OC_INTR_OC4_MASK;
oc5 = st & OC_INTR_OC5_MASK;
ex = oc1 | oc2 | oc3 | oc4;
/* rate limiting irq message to every one second */
if (printk_timed_ratelimit(&j, 1000)) {
pr_err("soctherm: OC ALARM 0x%08x\n", ex);
ledtrig_throttle_event();
}
if (ex) {
writel(st, ts->regs + OC_INTR_STATUS);
st &= ~ex;
if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1, ts))
soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2, ts))
soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3, ts))
soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4, ts))
soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
if (oc5 && !soctherm_handle_alarm(THROTTLE_OC5, ts))
soctherm_oc_intr_enable(ts, THROTTLE_OC5, true);
clear_oc_counters(ts);
if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
handle_nested_irq(
irq_find_mapping(soc_irq_cdata.domain, 0));
if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
handle_nested_irq(
irq_find_mapping(soc_irq_cdata.domain, 1));
if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
handle_nested_irq(
irq_find_mapping(soc_irq_cdata.domain, 2));
if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
handle_nested_irq(
irq_find_mapping(soc_irq_cdata.domain, 3));
}
if (st) {
pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
writel(st, ts->regs + OC_INTR_STATUS);
}
return IRQ_HANDLED;
}
/**
* soctherm_edp_isr() - Disables any active interrupts
* @irq: The interrupt request number
* @arg: Opaque pointer to an argument
*
* Writes to the OC_INTR_DISABLE register the over current interrupt status,
* masking any asserted interrupts. Doing this prevents the same interrupts
* from triggering this isr repeatedly. The thread woken by this isr will
* handle asserted interrupts and subsequently unmask/re-enable them.
*
* The OC_INTR_DISABLE register indicates which OC interrupts
* have been disabled.
*
* Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
*/
static irqreturn_t soctherm_edp_isr(int irq, void *arg)
{
struct tegra_soctherm *ts = arg;
u32 r;
if (!ts)
return IRQ_NONE;
r = readl(ts->regs + OC_INTR_STATUS);
writel(r, ts->regs + OC_INTR_DISABLE);
return IRQ_WAKE_THREAD;
}
/**
* soctherm_oc_irq_lock() - locks the over-current interrupt request
* @data: Interrupt request data
*
* Looks up the chip data from @data and locks the mutex associated with
* a particular over-current interrupt request.
*/
static void soctherm_oc_irq_lock(struct irq_data *data)
{
struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
mutex_lock(&d->irq_lock);
}
/**
* soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
* @data: Interrupt request data
*
* Looks up the interrupt request data @data and unlocks the mutex associated
* with a particular over-current interrupt request.
*/
static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
{
struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
mutex_unlock(&d->irq_lock);
}
/**
* soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
* @data: irq_data structure of the chip
*
* Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
* to respond to over-current interrupts.
*
*/
static void soctherm_oc_irq_enable(struct irq_data *data)
{
struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
d->irq_enable |= BIT(data->hwirq);
}
/**
* soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
* @irq_data: The interrupt request information
*
* Clears the interrupt request enable bit of the overcurrent
* interrupt request chip data.
*
* Return: Nothing is returned (void)
*/
static void soctherm_oc_irq_disable(struct irq_data *data)
{
struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
d->irq_enable &= ~BIT(data->hwirq);
}
static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
{
return 0;
}
/**
* soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
* @h: Interrupt request domain
* @virq: Virtual interrupt request number
* @hw: Hardware interrupt request number
*
* Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
* interrupt request is called, the irq_domain takes the request's virtual
* request number (much like a virtual memory address) and maps it to a
* physical hardware request number.
*
* When a mapping doesn't already exist for a virtual request number, the
* irq_domain calls this function to associate the virtual request number with
* a hardware request number.
*
* Return: 0
*/
static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
irq_hw_number_t hw)
{
struct soctherm_oc_irq_chip_data *data = h->host_data;
irq_set_chip_data(virq, data);
irq_set_chip(virq, &data->irq_chip);
irq_set_nested_thread(virq, 1);
return 0;
}
/**
* soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
* @d: Interrupt request domain
* @intspec: Array of u32s from DTs "interrupt" property
* @intsize: Number of values inside the intspec array
* @out_hwirq: HW IRQ value associated with this interrupt
* @out_type: The IRQ SENSE type for this interrupt.
*
* This Device Tree IRQ specifier translation function will translate a
* specific "interrupt" as defined by 2 DT values where the cell values map
* the hwirq number + 1 and linux irq flags. Since the output is the hwirq
* number, this function will subtract 1 from the value listed in DT.
*
* Return: 0
*/
static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
irq_hw_number_t *out_hwirq, unsigned int *out_type)
{
if (WARN_ON(intsize < 2))
return -EINVAL;
/*
* The HW value is 1 index less than the DT IRQ values.
* i.e. OC4 goes to HW index 3.
*/
*out_hwirq = intspec[0] - 1;
*out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
return 0;
}
static struct irq_domain_ops soctherm_oc_domain_ops = {
.map = soctherm_oc_irq_map,
.xlate = soctherm_irq_domain_xlate_twocell,
};
/**
* soctherm_oc_int_init() - Initial enabling of the over
* current interrupts
* @np: The devicetree node for soctherm
* @num_irqs: The number of new interrupt requests
*
* Sets the over current interrupt request chip data
*
* Return: 0 on success or if overcurrent interrupts are not enabled,
* -ENOMEM (out of memory), or irq_base if the function failed to
* allocate the irqs
*/
static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
{
if (!num_irqs) {
pr_info("%s(): OC interrupts are not enabled\n", __func__);
return 0;
}
mutex_init(&soc_irq_cdata.irq_lock);
soc_irq_cdata.irq_enable = 0;
soc_irq_cdata.irq_chip.name = "soc_therm_oc";
soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
soctherm_oc_irq_sync_unlock;
soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
soc_irq_cdata.irq_chip.irq_set_wake = NULL;
soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
&soctherm_oc_domain_ops,
&soc_irq_cdata);
if (!soc_irq_cdata.domain) {
pr_err("%s: Failed to create IRQ domain\n", __func__);
return -ENOMEM;
}
pr_debug("%s(): OC interrupts enabled successful\n", __func__);
return 0;
}
#ifdef CONFIG_DEBUG_FS
static int regs_show(struct seq_file *s, void *data)
{
struct platform_device *pdev = s->private;
struct tegra_soctherm *ts = platform_get_drvdata(pdev);
const struct tegra_tsensor *tsensors = ts->soc->tsensors;
const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
u32 r, state;
int i, level;
seq_puts(s, "-----TSENSE (convert HW)-----\n");
for (i = 0; i < ts->soc->num_tsensors; i++) {
r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
seq_printf(s, "%s: ", tsensors[i].name);
seq_printf(s, "En(%d) ", state);
if (!state) {
seq_puts(s, "\n");
continue;
}
state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
seq_printf(s, "tiddq(%d) ", state);
state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
seq_printf(s, "ten_count(%d) ", state);
state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
seq_printf(s, "tsample(%d) ", state + 1);
r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
seq_printf(s, "Temp(%d/", state);
state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
seq_printf(s, "%d) ", translate_temp(state));
r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
seq_printf(s, "Capture(%d/", state);
state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
seq_printf(s, "%d) ", state);
r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
seq_printf(s, "Stop(%d) ", state);
state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
seq_printf(s, "Tall(%d) ", state);
state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
seq_printf(s, "Over(%d/", state);
state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
seq_printf(s, "%d/", state);
state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
seq_printf(s, "%d) ", state);
r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
seq_printf(s, "Therm_A/B(%d/", state);
state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
seq_printf(s, "%d)\n", (s16)state);
}
r = readl(ts->regs + SENSOR_PDIV);
seq_printf(s, "PDIV: 0x%x\n", r);
r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
seq_printf(s, "HOTSPOT: 0x%x\n", r);
r = readl(ts->regs + SENSOR_HW_PLLX_OFFSET_MAX);
seq_printf(s, "HW_PLLX_OFFSET_MAX: 0x%x\n", r);
r = readl(ts->regs + SENSOR_HW_PLLX_OFFSET_MIN);
seq_printf(s, "HW_PLLX_OFFSET_MIN: 0x%x\n", r);
seq_puts(s, "\n");
seq_puts(s, "-----SOC_THERM-----\n");
r = readl(ts->regs + SENSOR_TEMP1);
state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
seq_printf(s, " GPU(%d) ", translate_temp(state));
r = readl(ts->regs + SENSOR_TEMP2);
state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
seq_printf(s, " PLLX(%d) ", translate_temp(state));
state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
seq_printf(s, " MEM(%d)\n", translate_temp(state));
for (i = 0; i < ts->soc->num_ttgs; i++) {
seq_printf(s, "%s:\n", ttgs[i]->name);
for (level = 0; level < 4; level++) {
s32 v;
u32 mask;
u16 off = ttgs[i]->thermctl_lvl0_offset;
r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
state = REG_GET_MASK(r, mask);
v = sign_extend32(state, ts->soc->bptt - 1);
v *= ts->soc->thresh_grain;
seq_printf(s, " %d: Up/Dn(%d /", level, v);
mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
state = REG_GET_MASK(r, mask);
v = sign_extend32(state, ts->soc->bptt - 1);
v *= ts->soc->thresh_grain;
seq_printf(s, "%d ) ", v);
mask = THERMCTL_LVL0_CPU0_EN_MASK;
state = REG_GET_MASK(r, mask);
seq_printf(s, "En(%d) ", state);
mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
state = REG_GET_MASK(r, mask);
seq_puts(s, "CPU Throt");
if (!state)
seq_printf(s, "(%s) ", "none");
else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
seq_printf(s, "(%s) ", "L");
else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
seq_printf(s, "(%s) ", "H");
else
seq_printf(s, "(%s) ", "H+L");
mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
state = REG_GET_MASK(r, mask);
seq_puts(s, "GPU Throt");
if (!state)
seq_printf(s, "(%s) ", "none");
else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
seq_printf(s, "(%s) ", "L");
else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
seq_printf(s, "(%s) ", "H");
else
seq_printf(s, "(%s) ", "H+L");
mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
state = REG_GET_MASK(r, mask);
seq_printf(s, "Status(%s)\n",
state == 0 ? "LO" :
state == 1 ? "In" :
state == 2 ? "Res" : "HI");
}
}
r = readl(ts->regs + THERMCTL_STATS_CTL);
seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
r & STATS_CTL_EN_UP ? "En" : "--",
r & STATS_CTL_EN_DN ? "En" : "--");
for (level = 0; level < 4; level++) {
u16 off;
off = THERMCTL_LVL0_UP_STATS;
r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
seq_printf(s, " Level_%d Up(%d) ", level, r);
off = THERMCTL_LVL0_DN_STATS;
r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
seq_printf(s, "Dn(%d)\n", r);
}
r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
seq_printf(s, "Thermtrip Any En(%d)\n", state);
for (i = 0; i < ts->soc->num_ttgs; i++) {
state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
seq_printf(s, " %s En(%d) ", ttgs[i]->name, state);
state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
state *= ts->soc->thresh_grain;
seq_printf(s, "Thresh(%d)\n", state);
}
r = readl(ts->regs + THROT_GLOBAL_CFG);
seq_puts(s, "\n");
seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
seq_puts(s, "---------------------------------------------------\n");
r = readl(ts->regs + THROT_STATUS);
state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
seq_printf(s, "THROT STATUS: breach(%d) ", state);
state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
seq_printf(s, "state(%d) ", state);
state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
seq_printf(s, "enabled(%d)\n", state);
r = readl(ts->regs + CPU_PSKIP_STATUS);
if (ts->soc->use_ccroc) {
state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
} else {
state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
seq_printf(s, "N(%d) ", state);
state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
seq_printf(s, "enabled(%d)\n", state);
}
return 0;
}
static int regs_open(struct inode *inode, struct file *file)
{
return single_open(file, regs_show, inode->i_private);
}
static const struct file_operations regs_fops = {
.open = regs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int temp_get(void *data, u64 *val)
{
int temp;
tegra_thermctl_get_temp(data, &temp);
*val = temp;
return 0;
}
static int temp_set(void *data, u64 val)
{
struct tegra_thermctl_zone *t = data;
u32 r;
r = readl(t->reg);
val = translate_temp_reverse((u32)val);
r = REG_SET_MASK(r, t->sg->sensor_temp_mask, val);
writel(r, t->reg);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(temp_fops, temp_get, temp_set, "%lld\n");
static void soctherm_hw_pllx_offsets_init(struct tegra_soctherm *tegra);
static int max_off_get(void *data, u64 *val)
{
struct tegra_thermctl_zone *z = data;
u32 r;
r = readl(z->ts->regs + SENSOR_HW_PLLX_OFFSET_MAX);
*val = REG_GET_MASK(r, z->sg->hw_pllx_offset_mask);
return 0;
}
static int max_off_set(void *data, u64 val)
{
struct tegra_thermctl_zone *z = data;
struct tsensor_group_offsets *toffs = z->ts->soc->toffs;
u32 id = z->sg->id;
int i;
for (i = 0; i < z->ts->soc->num_ttgs; i++)
if (toffs[i].ttg->id == id)
break;
toffs[i].max = val;
soctherm_hw_pllx_offsets_init(z->ts);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(max_fops, max_off_get, max_off_set, "%lld\n");
static int min_off_get(void *data, u64 *val)
{
struct tegra_thermctl_zone *z = data;
u32 r;
r = readl(z->ts->regs + SENSOR_HW_PLLX_OFFSET_MIN);
*val = REG_GET_MASK(r, z->sg->hw_pllx_offset_mask);
return 0;
}
static int min_off_set(void *data, u64 val)
{
struct tegra_thermctl_zone *z = data;
struct tsensor_group_offsets *toffs = z->ts->soc->toffs;
u32 id = z->sg->id;
int i;
for (i = 0; i < z->ts->soc->num_ttgs; i++)
if (toffs[i].ttg->id == id)
break;
toffs[i].min = val;
soctherm_hw_pllx_offsets_init(z->ts);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(min_fops, min_off_get, min_off_set, "%lld\n");
static int hw_pllx_offsetting_set(void *data, u64 val)
{
bool low_v = (val) ? true : false;
tegra_soctherm_cpu_tsens_invalidate(low_v);
tegra_soctherm_gpu_tsens_invalidate(low_v);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(hw_pllx_off_fops, NULL, hw_pllx_offsetting_set,
"%lld\n");
static int thermtrip_get(void *data, u64 *val)
{
struct tegra_thermctl_zone *z = data;
u32 r;
r = readl(z->ts->regs + THERMCTL_THERMTRIP_CTL);
*val = REG_GET_MASK(r, z->sg->thermtrip_threshold_mask);
*val *= z->ts->soc->thresh_grain;
return 0;
}
static int thermtrip_set(void *data, u64 val)
{
struct tegra_thermctl_zone *z = data;
return thermtrip_program(z->dev, z->sg, (int)val);
}
DEFINE_SIMPLE_ATTRIBUTE(tt_fops, thermtrip_get, thermtrip_set, "%lld\n");
static int thermtrip_en_get(void *data, u64 *val)
{
struct tegra_thermctl_zone *z = data;
u32 r;
r = readl(z->ts->regs + THERMCTL_THERMTRIP_CTL);
*val = REG_GET_MASK(r, z->sg->thermtrip_enable_mask);
return 0;
}
static int thermtrip_en_set(void *data, u64 val)
{
struct tegra_thermctl_zone *z = data;
u32 r;
r = readl(z->ts->regs + THERMCTL_THERMTRIP_CTL);
r = REG_SET_MASK(r, z->sg->thermtrip_enable_mask, !!val);
writel(r, z->ts->regs + THERMCTL_THERMTRIP_CTL);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(tt_en_fops, thermtrip_en_get,
thermtrip_en_set, "%lld\n");
static int tempoverride_get(void *data, u64 *val)
{
struct tegra_soctherm *tegra = data;
*val = readl(tegra->regs + TS_TEMP_SW_OVERRIDE);
return 0;
}
static int tempoverride_set(void *data, u64 val)
{
struct tegra_soctherm *tegra = data;
val = (val) ? 1 : 0;
writel(val, tegra->regs + TS_TEMP_SW_OVERRIDE);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(tempoverride_fops, tempoverride_get,
tempoverride_set, "%lld\n");
static int mode_get(void *data, u64 *val)
{
struct soctherm_throt_cfg *stc = data;
*val = stc->oc_cfg.mode;
return 0;
}
static int mode_set(void *data, u64 val)
{
u32 r;
struct soctherm_throt_cfg *stc = data;
struct soctherm_throt_cfg *start = stc - stc->id;
struct tegra_soctherm *ts;
ts = container_of(start, struct tegra_soctherm, throt_cfgs[0]);
stc->oc_cfg.mode = val;
r = readl(ts->regs + ALARM_CFG(stc->id));
r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, stc->oc_cfg.mode);
writel(r, ts->regs + ALARM_CFG(stc->id));
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(mode_fops, mode_get, mode_set, "%lld\n");
static int thresh_get(void *data, u64 *val)
{
struct soctherm_throt_cfg *stc = data;
*val = stc->oc_cfg.alarm_cnt_thresh;
return 0;
}
static int thresh_set(void *data, u64 val)
{
struct soctherm_throt_cfg *stc = data;
struct soctherm_throt_cfg *start = stc - stc->id;
struct tegra_soctherm *ts;
ts = container_of(start, struct tegra_soctherm, throt_cfgs[0]);
stc->oc_cfg.alarm_cnt_thresh = val;
writel(stc->oc_cfg.alarm_cnt_thresh,
ts->regs + ALARM_CNT_THRESHOLD(stc->id));
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(thresh_fops, thresh_get, thresh_set, "%lld\n");
static int filter_get(void *data, u64 *val)
{
struct soctherm_throt_cfg *stc = data;
*val = stc->oc_cfg.alarm_filter;
return 0;
}
static int filter_set(void *data, u64 val)
{
struct soctherm_throt_cfg *stc = data;
struct soctherm_throt_cfg *start = stc - stc->id;
struct tegra_soctherm *ts;
ts = container_of(start, struct tegra_soctherm, throt_cfgs[0]);
stc->oc_cfg.alarm_filter = val;
writel(stc->oc_cfg.alarm_filter, ts->regs + ALARM_FILTER(stc->id));
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(filter_fops, filter_get, filter_set, "%lld\n");
static int period_get(void *data, u64 *val)
{
struct soctherm_throt_cfg *stc = data;
*val = stc->oc_cfg.throt_period;
return 0;
}
static int period_set(void *data, u64 val)
{
struct soctherm_throt_cfg *stc = data;
struct soctherm_throt_cfg *start = stc - stc->id;
struct tegra_soctherm *ts;
ts = container_of(start, struct tegra_soctherm, throt_cfgs[0]);
stc->oc_cfg.throt_period = val;
writel(stc->oc_cfg.throt_period,
ts->regs + ALARM_THROTTLE_PERIOD(stc->id));
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(period_fops, period_get, period_set, "%lld\n");
static int polarity_get(void *data, u64 *val)
{
struct soctherm_throt_cfg *stc = data;
*val = stc->oc_cfg.active_low;
return 0;
}
static int polarity_set(void *data, u64 val)
{
u32 r;
struct soctherm_throt_cfg *stc = data;
struct soctherm_throt_cfg *start = stc - stc->id;
struct tegra_soctherm *ts;
ts = container_of(start, struct tegra_soctherm, throt_cfgs[0]);
stc->oc_cfg.active_low = val;
r = readl(ts->regs + ALARM_CFG(stc->id));
r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK,
stc->oc_cfg.active_low);
writel(r, ts->regs + ALARM_CFG(stc->id));
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(polarity_fops, polarity_get, polarity_set, "%lld\n");
static int level_set(void *data, u64 val)
{
struct soctherm_throt_cfg *stc = data;
struct soctherm_throt_cfg *start = stc - stc->id;
struct tegra_soctherm *ts;
ts = container_of(start, struct tegra_soctherm, throt_cfgs[0]);
if (val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
stc->gpu_throt_level = val;
throttlectl_gpu_level(ts, stc->id);
return 0;
}
static int level_get(void *data, u64 *val)
{
struct soctherm_throt_cfg *stc = data;
*val = stc->gpu_throt_level;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(lvl_fops, level_get, level_set, "%lld\n");
static int depth_set(void *data, u64 val)
{
struct soctherm_throt_cfg *stc = data;
struct soctherm_throt_cfg *start = stc - stc->id;
struct tegra_soctherm *ts;
ts = container_of(start, struct tegra_soctherm, throt_cfgs[0]);
if (val <= 100)
stc->cpu_throt_depth = val;
throttlectl_cpu_mn(ts, stc->id);
return 0;
}
static int depth_get(void *data, u64 *val)
{
struct soctherm_throt_cfg *stc = data;
*val = stc->cpu_throt_depth;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(depth_fops, depth_get, depth_set, "%lld\n");
static struct dentry *soctherm_throttle_debug_init(struct dentry *root,
struct platform_device *pdev)
{
struct tegra_soctherm *ts = platform_get_drvdata(pdev);
struct soctherm_throt_cfg *stc;
struct dentry *dir, *sdir, *file;
int i;
dir = debugfs_create_dir("throttle-cfg", root);
if (!dir) {
pr_err("unable to create throttle-cfg\n");
return NULL;
}
for (i = 0; i < THROTTLE_SIZE; i++) {
stc = &ts->throt_cfgs[i];
sdir = debugfs_create_dir(stc->name, dir);
if (!sdir)
return NULL;
file = debugfs_create_file("cpu", 0644, sdir, stc, &depth_fops);
file = file ? debugfs_create_file("gpu", 0644, sdir, stc,
&lvl_fops) : file;
if (stc->id < THROTTLE_OC1)
continue;
file = file ? debugfs_create_file("polarity", 0644, sdir, stc,
&polarity_fops) : file;
file = file ? debugfs_create_file("mode", 0644, sdir, stc,
&mode_fops) : file;
file = file ? debugfs_create_file("threshold", 0644, sdir, stc,
&thresh_fops) : file;
file = file ? debugfs_create_file("filter", 0644, sdir, stc,
&filter_fops) : file;
file = file ? debugfs_create_file("period", 0644, sdir, stc,
&period_fops) : file;
if (!file)
return NULL;
}
return file;
}
static void soctherm_debug_init(struct platform_device *pdev)
{
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
struct dentry *root, *file;
root = debugfs_create_dir("soctherm", NULL);
if (!root) {
dev_err(&pdev->dev, "failed to create debugfs directory\n");
return;
}
tegra->debugfs_dir = root;
file = debugfs_create_file("reg_contents", 0644, root, pdev,
&regs_fops);
file = (file) ? debugfs_create_file("tempoverride", 0644,
root, tegra, &tempoverride_fops) : file;
file = (file) ? debugfs_create_file("pllx_offset_en", 0644, root, NULL,
&hw_pllx_off_fops) : file;
file = (file) ? soctherm_throttle_debug_init(root, pdev) : file;
if (!file) {
dev_err(&pdev->dev, "failed to create debugfs file\n");
debugfs_remove_recursive(tegra->debugfs_dir);
tegra->debugfs_dir = NULL;
}
}
static void soctherm_debug_temp_add(struct tegra_thermctl_zone *z)
{
struct dentry *dir;
dir = debugfs_create_dir(z->sg->name, z->ts->debugfs_dir);
if (!dir) {
dev_err(z->dev, "%s error id:%d\n", __func__, z->sg->id);
return;
}
debugfs_create_file("temp", 0644, dir, z, &temp_fops);
if (tsensor_group_thermtrip_get(z->ts, z->sg->id) > 0) {
debugfs_create_file("thermtrip", 0644, dir, z, &tt_fops);
debugfs_create_file("thermtrip_en", 0644, dir, z, &tt_en_fops);
}
if (z->sg->id != TEGRA124_SOCTHERM_SENSOR_PLLX) {
debugfs_create_file("pllx_offset_max", 0644, dir, z, &max_fops);
debugfs_create_file("pllx_offset_min", 0644, dir, z, &min_fops);
}
return;
}
#else
static inline void soctherm_debug_init(struct platform_device *pdev) {}
static inline void soctherm_debug_temp_add(struct tegra_thermctl_zone *z) {}
#endif
static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
{
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
int err;
if (!tegra->clock_soctherm || !tegra->clock_tsensor)
return -EINVAL;
reset_control_assert(tegra->reset);
if (enable) {
err = clk_prepare_enable(tegra->clock_soctherm);
if (err) {
reset_control_deassert(tegra->reset);
return err;
}
err = clk_prepare_enable(tegra->clock_tsensor);
if (err) {
clk_disable_unprepare(tegra->clock_soctherm);
reset_control_deassert(tegra->reset);
return err;
}
} else {
clk_disable_unprepare(tegra->clock_tsensor);
clk_disable_unprepare(tegra->clock_soctherm);
}
reset_control_deassert(tegra->reset);
return 0;
}
static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
unsigned long *max_state)
{
*max_state = 1;
return 0;
}
static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
unsigned long *cur_state)
{
struct tegra_soctherm *ts = cdev->devdata;
u32 r;
r = readl(ts->regs + THROT_STATUS);
if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
*cur_state = 1;
else
*cur_state = 0;
return 0;
}
static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
unsigned long cur_state)
{
return 0;
}
static struct thermal_cooling_device_ops throt_cooling_ops = {
.get_max_state = throt_get_cdev_max_state,
.get_cur_state = throt_get_cdev_cur_state,
.set_cur_state = throt_set_cdev_state,
};
static int soctherm_thermtrips_parse(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct tegra_soctherm *ts = dev_get_drvdata(dev);
struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
const int max_num_prop = ts->soc->num_ttgs * 2;
int i = 0, j = 0, r, n;
u32 off[max_num_prop];
if (!tt)
return 0;
n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
if (n <= 0) {
dev_err(dev, "invalid dt prop: thermtrips:%d\n", n);
return n;
}
n = min(max_num_prop, n);
r = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
off, n);
if (r) {
dev_err(dev, "invalid num ele: thermtrips:%d\n", r);
return r;
}
for (j = 0; j < n; j = j + 2) {
if (off[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
continue;
tt[i].id = off[j];
tt[i].temp = off[j+1];
i++;
}
return 0;
}
static int soctherm_hw_pllx_offsets_parse(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct tegra_soctherm *ts = dev_get_drvdata(dev);
struct tsensor_group_offsets *toffs = ts->soc->toffs;
int i = 0, j = 0, r, n;
const u32 ele_per_prop = 3;
/* offset from PLLX, no need to configure PLLX */
const u32 max_num_props = (ts->soc->num_ttgs - 1) * ele_per_prop;
u32 off[max_num_props];
if (!toffs)
return 0;
hw_pllx.sensor_valid_reg = ts->regs + SENSOR_VALID;
n = of_property_count_u32_elems(dev->of_node, "hw-pllx-offsets");
if (n <= 0) {
dev_err(dev, "invalid dt prop: hw-pllx-offsets:%d\n", n);
return n;
}
if (n > max_num_props || n % ele_per_prop != 0) {
dev_err(dev, "invalid num of hw_pllx_offsets: %d\n", n);
return -EINVAL;
}
r = of_property_read_u32_array(dev->of_node, "hw-pllx-offsets", off, n);
if (r) {
dev_info(dev, "hw_pllx_offset not enabled:%d, num:%d\n", r, n);
return r;
}
for (j = 0; j < n; j = j + ele_per_prop) {
if (off[j] >= TEGRA124_SOCTHERM_SENSOR_NUM ||
off[j] == TEGRA124_SOCTHERM_SENSOR_PLLX)
continue;
for (i = 0; i < ts->soc->num_ttgs; i++)
if (toffs[i].ttg->id == off[j])
break;
if (i == ts->soc->num_ttgs)
continue;
toffs[i].hw_offsetting_en = 1;
toffs[i].min = off[j+1] / 500;
toffs[i].max = off[j+2] / 500;
dev_info(dev, "pllx_offset tz:%d max:%d, min:%d\n",
toffs[i].ttg->id, toffs[i].max, toffs[i].min);
}
return 0;
}
static void soctherm_oc_cfg_parse(struct device *dev,
struct device_node *np_oc,
struct soctherm_throt_cfg *stc)
{
u32 val;
if (!of_property_read_u32(np_oc, "nvidia,polarity-active-low", &val))
stc->oc_cfg.active_low = val;
if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
stc->oc_cfg.intr_en = 1;
stc->oc_cfg.alarm_cnt_thresh = val;
}
if (!of_property_read_u32(np_oc, "nvidia,throttle-period", &val))
stc->oc_cfg.throt_period = val;
if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
stc->oc_cfg.alarm_filter = val;
/* BRIEF throttling by default, do not support STICKY */
stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
stc->init = true;
}
static int soctherm_throt_cfg_parse(struct device *dev,
struct device_node *np,
struct soctherm_throt_cfg *stc)
{
struct tegra_soctherm *ts = dev_get_drvdata(dev);
int r, r1;
u32 val;
r = of_property_read_u32(np, "nvidia,priority", &val);
if (r) {
dev_err(dev, "throttle-cfg: %s: inv priority\n", stc->name);
return -EINVAL;
}
stc->priority = val;
r = of_property_read_u32(np, ts->soc->use_ccroc ?
"nvidia,cpu-throt-level" :
"nvidia,cpu-throt-percent", &val);
if (!r && ts->soc->use_ccroc)
stc->cpu_throt_level = val;
else if (!r && val <= 100)
stc->cpu_throt_depth = val;
r1 = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
if (!r1 && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
stc->gpu_throt_level = val;
if (r && r1) {
dev_err(dev, "throttle-cfg: %s: no throt prop\n", stc->name);
return -EINVAL;
}
return 0;
}
/**
* soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
* and register them as cooling devices.
*/
static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct tegra_soctherm *ts = dev_get_drvdata(dev);
struct device_node *np, *c;
const char *name;
int i, err;
for (i = 0; i < THROTTLE_SIZE; i++) {
ts->throt_cfgs[i].name = throt_names[i];
ts->throt_cfgs[i].id = i;
ts->throt_cfgs[i].init = false;
}
np = of_get_child_by_name(dev->of_node, "throttle-cfgs");
if (!np) {
dev_info(dev, "throttle-cfg: no throttle-cfgs\n");
return;
}
for_each_child_of_node(np, c) {
struct soctherm_throt_cfg *stc;
struct thermal_cooling_device *tcd;
name = c->name;
stc = find_throttle_cfg_by_name(ts, name);
if (!stc) {
dev_err(dev, "throttle-cfg: could not find %s\n", name);
continue;
}
if (stc->init) {
dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
break;
}
err = soctherm_throt_cfg_parse(dev, c, stc);
if (err)
continue;
if (stc->id >= THROTTLE_OC1) {
soctherm_oc_cfg_parse(dev, c, stc);
} else {
tcd = thermal_of_cooling_device_register(c,
(char *)name, ts,
&throt_cooling_ops);
if (IS_ERR_OR_NULL(tcd)) {
dev_err(dev, "%s: cdev register failed\n",
name);
} else {
stc->cdev = tcd;
stc->init = true;
}
}
}
of_node_put(np);
}
/**
* throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
* @level: describing the level LOW/MED/HIGH of throttling
*
* It's necessary to set up the CPU-local CCROC NV_THERM instance with
* the M/N values desired for each level. This function does this.
*
* This function pre-programs the CCROC NV_THERM levels in terms of
* pre-configured "Low", "Medium" or "Heavy" throttle levels which are
* mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
*/
static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
{
u8 depth, dividend;
u32 r;
switch (level) {
case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
depth = 50;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_MED:
depth = 75;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
depth = 80;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
return;
default:
return;
}
dividend = THROT_DEPTH_DIVIDEND(depth);
/* setup PSKIP in ccroc nv_therm registers */
r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
}
/**
* throttlectl_cpu_level_select() - program CPU pulse skipper config
* @throt: the LIGHT/HEAVY of throttle event id
*
* Pulse skippers are used to throttle clock frequencies. This
* function programs the pulse skippers based on @throt and platform
* data. This function is used on SoCs which have CPU-local pulse
* skipper control, such as T13x. It programs soctherm's interface to
* Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
* vectors. PSKIP_BYPASS mode is set as required per HW spec.
*/
static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt)
{
u32 r, throt_vect;
/* Denver:CCROC NV_THERM interface N:3 Mapping */
switch (ts->throt_cfgs[throt].cpu_throt_level) {
case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
throt_vect = THROT_VECT_LOW;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_MED:
throt_vect = THROT_VECT_MED;
break;
case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
throt_vect = THROT_VECT_HIGH;
break;
default:
throt_vect = THROT_VECT_NONE;
break;
}
r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
/* bypass sequencer in soc_therm as it is programmed in ccroc */
r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
}
/**
* throttlectl_gpu_level() - selects throttling level for GPU
* @throt: the LIGHT/HEAVY of throttle event id
*
* This function programs soctherm's interface to GK20a NV_THERM to select
* pre-configured "Low", "Medium" or "Heavy" throttle levels.
*
* Return: boolean true if HW was programmed
*/
static void throttlectl_gpu_level(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt)
{
u32 r, depth, throt_vect;
depth = ts->throt_cfgs[throt].gpu_throt_level;
throt_vect = THROT_LEVEL_TO_DEPTH(depth);
r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
}
/**
* throttlectl_cpu_mn() - program CPU pulse skipper configuration
* @throt: the LIGHT/HEAVY of throttle event id
*
* Pulse skippers are used to throttle clock frequencies. This
* function programs the pulse skippers based on @throt and platform
* data. This function is used for CPUs that have "remote" pulse
* skipper control, e.g., the CPU pulse skipper is controlled by the
* SOC_THERM IP block. (SOC_THERM is located outside the CPU
* complex.)
*/
static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt)
{
u32 r, depth;
u8 dividend;
depth = ts->throt_cfgs[throt].cpu_throt_depth;
dividend = THROT_DEPTH_DIVIDEND(depth);
r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
}
static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt)
{
u32 r;
struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
if (oc->mode == OC_THROTTLE_MODE_DISABLED)
return -EINVAL;
r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
writel(r, ts->regs + ALARM_CFG(throt));
writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
soctherm_oc_intr_enable(ts, throt, oc->intr_en);
return 0;
}
/**
* soctherm_throttle_program() - programs pulse skippers' configuration
* @throt: the LIGHT/HEAVY of the throttle event id.
*
* Pulse skippers are used to throttle clock frequencies.
* This function programs the pulse skippers.
*/
static void soctherm_throttle_program(struct tegra_soctherm *ts,
enum soctherm_throttle_id throt)
{
u32 r;
int err = 0;
struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
if (!stc.init)
return;
if (throt >= THROTTLE_OC1)
err = soctherm_oc_cfg_program(ts, throt);
if (err)
return;
/* Setup PSKIP parameters */
if (ts->soc->use_ccroc)
throttlectl_cpu_level_select(ts, throt);
else
throttlectl_cpu_mn(ts, throt);
throttlectl_gpu_level(ts, throt);
r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
writel(r, ts->regs + THROT_DELAY_CTRL(throt));
r = readl(ts->regs + THROT_PRIORITY_LOCK);
r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
if (r >= stc.priority)
return;
r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
stc.priority);
writel(r, ts->regs + THROT_PRIORITY_LOCK);
}
static void tegra_soctherm_throttle(struct device *dev)
{
struct tegra_soctherm *ts = dev_get_drvdata(dev);
u32 v;
int i;
/* configure LOW, MED and HIGH levels for CCROC NV_THERM */
if (ts->soc->use_ccroc) {
throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
}
/* Thermal HW throttle programming */
for (i = 0; i < THROTTLE_SIZE; i++)
soctherm_throttle_program(ts, i);
v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
if (ts->soc->use_ccroc) {
ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
} else {
writel(v, ts->regs + THROT_GLOBAL_CFG);
tegra_super_cdiv_use_therm_controls(true);
}
/* initialize stats collection */
v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
writel(v, ts->regs + THERMCTL_STATS_CTL);
}
static int soctherm_interrupts_init(struct platform_device *pdev,
struct tegra_soctherm *tegra)
{
struct device_node *np = pdev->dev.of_node;
int ret;
ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
if (ret < 0) {
dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
return ret;
}
tegra->thermal_irq = platform_get_irq(pdev, 0);
if (tegra->thermal_irq < 0) {
dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
return 0;
}
tegra->edp_irq = platform_get_irq(pdev, 1);
if (tegra->edp_irq < 0) {
dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
return 0;
}
ret = devm_request_threaded_irq(&pdev->dev,
tegra->thermal_irq,
soctherm_thermal_isr,
soctherm_thermal_isr_thread,
IRQF_ONESHOT,
dev_name(&pdev->dev),
tegra);
if (ret < 0) {
dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
return ret;
}
ret = devm_request_threaded_irq(&pdev->dev,
tegra->edp_irq,
soctherm_edp_isr,
soctherm_edp_isr_thread,
IRQF_ONESHOT,
"soctherm_edp",
tegra);
if (ret < 0) {
dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
return ret;
}
return 0;
}
static void soctherm_sensor_invalidate(void)
{
tegra_soctherm_cpu_tsens_invalidate(hw_pllx.cpu_rail_low_voltage);
tegra_soctherm_gpu_tsens_invalidate(hw_pllx.gpu_rail_low_voltage);
}
void tegra_soctherm_cpu_tsens_invalidate(bool low_voltage_range)
{
u32 r;
unsigned long flags;
if (!hw_pllx.sensor_valid_reg)
return;
spin_lock_irqsave(&soctherm_lock, flags);
hw_pllx.cpu_rail_low_voltage = low_voltage_range;
r = readl(hw_pllx.sensor_valid_reg);
r = (hw_pllx.cpu_rail_low_voltage) ?
(r | SENSOR_CPU_VALID_MASK) :
(r & ~SENSOR_CPU_VALID_MASK);
writel(r, hw_pllx.sensor_valid_reg);
spin_unlock_irqrestore(&soctherm_lock, flags);
}
void tegra_soctherm_gpu_tsens_invalidate(bool low_voltage_range)
{
u32 r;
unsigned long flags;
if (!hw_pllx.sensor_valid_reg)
return;
spin_lock_irqsave(&soctherm_lock, flags);
hw_pllx.gpu_rail_low_voltage = low_voltage_range;
r = readl(hw_pllx.sensor_valid_reg);
r = (hw_pllx.gpu_rail_low_voltage) ?
(r | SENSOR_GPU_VALID_MASK) :
(r & ~SENSOR_GPU_VALID_MASK);
writel(r, hw_pllx.sensor_valid_reg);
spin_unlock_irqrestore(&soctherm_lock, flags);
}
EXPORT_SYMBOL_GPL(tegra_soctherm_gpu_tsens_invalidate);
static void soctherm_hw_pllx_offsets_init(struct tegra_soctherm *tegra)
{
const struct tegra_tsensor_group *ttg;
struct tsensor_group_offsets *toff;
u32 i, max = 0, min = 0, en = 0;
if (!tegra->soc->toffs)
return;
for (i = 0; i < tegra->soc->num_ttgs; ++i) {
toff = &tegra->soc->toffs[i];
ttg = toff->ttg;
if (!toff->hw_offsetting_en)
continue;
max = REG_SET_MASK(max, ttg->hw_pllx_offset_mask, toff->max);
min = REG_SET_MASK(min, ttg->hw_pllx_offset_mask, toff->min);
en = REG_SET_MASK(en, ttg->hw_pllx_offset_en_mask, 1);
}
if (en) {
writel(max, tegra->regs + SENSOR_HW_PLLX_OFFSET_MAX);
writel(min, tegra->regs + SENSOR_HW_PLLX_OFFSET_MIN);
writel(en, tegra->regs + SENSOR_HW_PLLX_OFFSET_EN);
soctherm_sensor_invalidate();
}
}
static void soctherm_init(struct platform_device *pdev)
{
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
int i;
u32 pdiv, hotspot;
/* Initialize raw sensors */
for (i = 0; i < tegra->soc->num_tsensors; ++i)
enable_tsensor(tegra, i);
pdiv = readl(tegra->regs + SENSOR_PDIV);
hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
for (i = 0; i < tegra->soc->num_ttgs; ++i) {
pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
tegra->soc->tsensors[0].config->pdiv);
/* hotspot offset from PLLX, doesn't need to configure PLLX */
if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
continue;
hotspot = REG_SET_MASK(hotspot, ttgs[i]->pllx_hotspot_mask,
ttgs[i]->pllx_hotspot_diff);
}
writel(pdiv, tegra->regs + SENSOR_PDIV);
writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
/* use hw offsets if available */
soctherm_hw_pllx_offsets_init(tegra);
/* Configure hw throttle */
tegra_soctherm_throttle(&pdev->dev);
}
static ssize_t show_oc_stats_sysfs(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct tegra_soctherm *ts = dev_get_drvdata(dev);
struct soctherm_throt_cfg *throt_cfgs = ts->throt_cfgs;
int ret = 0;
if (!ts)
return -EINVAL;
ret = sprintf(buf, "oc1:%llu oc2:%llu oc3:%llu oc4:%llu oc5:%llu\n",
throt_cfgs[THROTTLE_OC1].oc_cfg.oc_cnt + readl(ts->regs + OC1_STATS),
throt_cfgs[THROTTLE_OC2].oc_cfg.oc_cnt + readl(ts->regs + OC2_STATS),
throt_cfgs[THROTTLE_OC3].oc_cfg.oc_cnt + readl(ts->regs + OC3_STATS),
throt_cfgs[THROTTLE_OC4].oc_cfg.oc_cnt + readl(ts->regs + OC4_STATS),
throt_cfgs[THROTTLE_OC5].oc_cfg.oc_cnt + readl(ts->regs + OC5_STATS));
return ret;
}
static DEVICE_ATTR(oc_stats, S_IRUGO, show_oc_stats_sysfs, NULL);
static void soctherm_oc_counter_init(struct platform_device *pdev)
{
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
writel(OC_STATS_CTL_EN_ALL, (tegra->regs + OC_STATS_CTL));
device_create_file(&pdev->dev, &dev_attr_oc_stats);
}
static const struct of_device_id tegra_soctherm_of_match[] = {
#ifdef CONFIG_ARCH_TEGRA_124_SOC
{
.compatible = "nvidia,tegra124-soctherm",
.data = &tegra124_soctherm,
},
#endif
#ifdef CONFIG_ARCH_TEGRA_132_SOC
{
.compatible = "nvidia,tegra132-soctherm",
.data = &tegra132_soctherm,
},
#endif
#ifdef CONFIG_ARCH_TEGRA_210_SOC
{
.compatible = "nvidia,tegra210-soctherm",
.data = &tegra210_soctherm,
},
{
.compatible = "nvidia,tegra210b01-soctherm",
.data = &tegra210b01_soctherm,
},
#endif
{ },
};
MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
static int tegra_soctherm_probe(struct platform_device *pdev)
{
const struct of_device_id *match;
struct tegra_soctherm *tegra;
struct thermal_zone_device *z;
struct tsensor_shared_calib shared_calib;
struct resource *res;
struct tegra_soctherm_soc *soc;
unsigned int i;
int err;
match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
if (!match)
return -ENODEV;
soc = (struct tegra_soctherm_soc *)match->data;
if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
return -EINVAL;
tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
if (!tegra)
return -ENOMEM;
mutex_init(&tegra->thermctl_lock);
dev_set_drvdata(&pdev->dev, tegra);
tegra->soc = soc;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"soctherm-reg");
tegra->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tegra->regs)) {
dev_err(&pdev->dev, "can't get soctherm registers");
return PTR_ERR(tegra->regs);
}
if (tegra->soc->use_ccroc) {
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"ccroc-reg");
tegra->ccroc_regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(tegra->ccroc_regs)) {
dev_err(&pdev->dev, "can't get ccroc registers");
return PTR_ERR(tegra->ccroc_regs);
}
}
tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
if (IS_ERR(tegra->reset)) {
dev_err(&pdev->dev, "can't get soctherm reset\n");
return PTR_ERR(tegra->reset);
}
tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
if (IS_ERR(tegra->clock_tsensor)) {
dev_err(&pdev->dev, "can't get tsensor clock\n");
return PTR_ERR(tegra->clock_tsensor);
}
tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
if (IS_ERR(tegra->clock_soctherm)) {
dev_err(&pdev->dev, "can't get soctherm clock\n");
return PTR_ERR(tegra->clock_soctherm);
}
tegra->calib = devm_kzalloc(&pdev->dev,
sizeof(u32) * soc->num_tsensors,
GFP_KERNEL);
if (!tegra->calib)
return -ENOMEM;
/* calculate shared calibration data */
err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
if (err)
return err;
/* calculate tsensor calibaration data */
for (i = 0; i < soc->num_tsensors; ++i) {
err = tegra_calc_tsensor_calib(soc->tsensors[i].config,
&shared_calib,
&soc->tsensors[i].fuse_corr,
&tegra->calib[i],
soc->tsensors[i].calib_fuse_offset);
if (err)
return err;
}
tegra->thermctl_tzs = devm_kzalloc(&pdev->dev,
sizeof(z) * soc->num_ttgs, GFP_KERNEL);
if (!tegra->thermctl_tzs)
return -ENOMEM;
err = soctherm_clk_enable(pdev, true);
if (err)
return err;
soctherm_init_hw_throt_cdev(pdev);
soctherm_thermtrips_parse(pdev);
soctherm_hw_pllx_offsets_parse(pdev);
soctherm_init(pdev);
soctherm_debug_init(pdev);
soctherm_oc_counter_init(pdev);
for (i = 0; i < soc->num_ttgs; ++i) {
struct tegra_thermctl_zone *zone =
devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
if (!zone) {
err = -ENOMEM;
goto disable_clocks;
}
zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
zone->dev = &pdev->dev;
zone->sg = soc->ttgs[i];
zone->ts = tegra;
soctherm_debug_temp_add(zone);
z = devm_thermal_zone_of_sensor_register(&pdev->dev,
soc->ttgs[i]->id, zone,
&tegra_of_thermal_ops);
if (IS_ERR(z)) {
err = PTR_ERR(z);
dev_info(&pdev->dev, "failed to register sensor: %d\n",
err);
continue;
}
zone->tz = z;
tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
/* Configure hw trip points */
err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
if (err)
goto disable_clocks;
}
err = soctherm_interrupts_init(pdev, tegra);
return err;
disable_clocks:
soctherm_clk_enable(pdev, false);
return err;
}
static int tegra_soctherm_remove(struct platform_device *pdev)
{
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
debugfs_remove_recursive(tegra->debugfs_dir);
soctherm_clk_enable(pdev, false);
return 0;
}
static int __maybe_unused soctherm_suspend(struct device *dev)
{
return 0;
}
static int __maybe_unused soctherm_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
struct tegra_soctherm_soc *soc = tegra->soc;
int err, i;
soctherm_init(pdev);
for (i = 0; i < soc->num_ttgs; ++i) {
struct thermal_zone_device *tz;
tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
if (!tz)
continue;
err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
if (err) {
dev_err(&pdev->dev,
"Resume failed: set hwtrips failed\n");
return err;
}
}
return 0;
}
static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
static struct platform_driver tegra_soctherm_driver = {
.probe = tegra_soctherm_probe,
.remove = tegra_soctherm_remove,
.driver = {
.name = "tegra_soctherm",
.pm = &tegra_soctherm_pm,
.of_match_table = tegra_soctherm_of_match,
},
};
module_platform_driver(tegra_soctherm_driver);
MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
MODULE_LICENSE("GPL v2");