clean up HardwareSerial code

Remove unused variables, sanitize declarations and apply uncrust.
This commit is contained in:
Stefan Kalscheuer
2022-09-03 09:27:41 +02:00
parent afee7b10c2
commit 6368552ced
2 changed files with 227 additions and 266 deletions

View File

@@ -49,8 +49,7 @@ millis_t previous_cmd_ms = 0;
#define SERIAL_BUFFER_SIZE 64 #define SERIAL_BUFFER_SIZE 64
#endif #endif
struct ring_buffer struct ring_buffer {
{
unsigned char buffer[SERIAL_BUFFER_SIZE]; unsigned char buffer[SERIAL_BUFFER_SIZE];
volatile unsigned int head; volatile unsigned int head;
volatile unsigned int tail; volatile unsigned int tail;
@@ -61,16 +60,14 @@ ring_buffer rx_buffer_ajg = {{0}, 0, 0};
ring_buffer tx_buffer_ajg = {{0}, 0, 0}; ring_buffer tx_buffer_ajg = {{0}, 0, 0};
#endif #endif
inline void store_char(unsigned char c, ring_buffer *buffer) inline void store_char(unsigned char c, ring_buffer *buffer) {
{
unsigned int i = ((unsigned int)(buffer->head + 1)) % SERIAL_BUFFER_SIZE; unsigned int i = ((unsigned int)(buffer->head + 1)) % SERIAL_BUFFER_SIZE;
// if we should be storing the received character into the location // if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the // just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer // current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head. // and so we don't write the character or advance the head.
if (i != buffer->tail) if (i != buffer->tail) {
{
buffer->buffer[buffer->head] = c; buffer->buffer[buffer->head] = c;
buffer->head = i; buffer->head = i;
} }
@@ -82,27 +79,20 @@ void serialEvent3() {}
#define serialEvent3_implemented #define serialEvent3_implemented
ISR(USART3_RX_vect) ISR(USART3_RX_vect)
{ {
if (bit_is_clear(UCSR3A, UPE3)) if (bit_is_clear(UCSR3A, UPE3)) {
{
unsigned char c = UDR3; unsigned char c = UDR3;
store_char(c, &rx_buffer_ajg); store_char(c, &rx_buffer_ajg);
} }
else
{
unsigned char c = UDR3;
};
} }
#endif #endif
#ifdef USART3_UDRE_vect #ifdef USART3_UDRE_vect
ISR(USART3_UDRE_vect) ISR(USART3_UDRE_vect)
{ {
if (tx_buffer_ajg.head == tx_buffer_ajg.tail) if (tx_buffer_ajg.head == tx_buffer_ajg.tail) {
{
cbi(UCSR3B, UDRIE3); cbi(UCSR3B, UDRIE3);
} }
else else {
{
// There is more data in the output buffer. Send the next byte // There is more data in the output buffer. Send the next byte
unsigned char c = tx_buffer_ajg.buffer[tx_buffer_ajg.tail]; unsigned char c = tx_buffer_ajg.buffer[tx_buffer_ajg.tail];
tx_buffer_ajg.tail = (tx_buffer_ajg.tail + 1) % SERIAL_BUFFER_SIZE; tx_buffer_ajg.tail = (tx_buffer_ajg.tail + 1) % SERIAL_BUFFER_SIZE;
@@ -117,8 +107,7 @@ HardwareSerialClass::HardwareSerialClass(ring_buffer *rx_buffer, ring_buffer *tx
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl, volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
volatile uint8_t *ucsra, volatile uint8_t *ucsrb, volatile uint8_t *ucsra, volatile uint8_t *ucsrb,
volatile uint8_t *ucsrc, volatile uint8_t *udr, volatile uint8_t *ucsrc, volatile uint8_t *udr,
uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udrie, uint8_t u2x) uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udrie, uint8_t u2x) {
{
_rx_buffer = rx_buffer; _rx_buffer = rx_buffer;
_tx_buffer = tx_buffer; _tx_buffer = tx_buffer;
_ubrrh = ubrrh; _ubrrh = ubrrh;
@@ -136,33 +125,28 @@ HardwareSerialClass::HardwareSerialClass(ring_buffer *rx_buffer, ring_buffer *tx
// Public Methods ////////////////////////////////////////////////////////////// // Public Methods //////////////////////////////////////////////////////////////
void HardwareSerialClass::begin(unsigned long baud) void HardwareSerialClass::begin(unsigned long baud) {
{
uint16_t baud_setting; uint16_t baud_setting;
bool use_u2x = true; bool use_u2x = true;
#if F_CPU == 16000000UL #if F_CPU == 16000000UL
if (baud == 57600) if (baud == 57600)
{
use_u2x = false; use_u2x = false;
}
#endif #endif
try_again: try_again:
if (use_u2x) if (use_u2x) {
{
*_ucsra = 1 << _u2x; *_ucsra = 1 << _u2x;
baud_setting = (F_CPU / 4 / baud - 1) / 2; baud_setting = (F_CPU / 4 / baud - 1) / 2;
} }
else else {
{
*_ucsra = 0; *_ucsra = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2; baud_setting = (F_CPU / 8 / baud - 1) / 2;
} }
if ((baud_setting > 4095) && use_u2x) if ((baud_setting > 4095) && use_u2x) {
{
use_u2x = false; use_u2x = false;
goto try_again; goto try_again;
} }
@@ -179,34 +163,28 @@ try_again:
cbi(*_ucsrb, _udrie); cbi(*_ucsrb, _udrie);
} }
void HardwareSerialClass::begin(unsigned long baud, byte config) void HardwareSerialClass::begin(unsigned long baud, byte config) {
{
uint16_t baud_setting; uint16_t baud_setting;
uint8_t current_config;
bool use_u2x = true; bool use_u2x = true;
#if F_CPU == 16000000UL #if F_CPU == 16000000UL
if (baud == 57600) if (baud == 57600)
{
use_u2x = false; use_u2x = false;
}
#endif #endif
try_again: try_again:
if (use_u2x) if (use_u2x) {
{
*_ucsra = 1 << _u2x; *_ucsra = 1 << _u2x;
baud_setting = (F_CPU / 4 / baud - 1) / 2; baud_setting = (F_CPU / 4 / baud - 1) / 2;
} }
else else {
{
*_ucsra = 0; *_ucsra = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2; baud_setting = (F_CPU / 8 / baud - 1) / 2;
} }
if ((baud_setting > 4095) && use_u2x) if ((baud_setting > 4095) && use_u2x) {
{
use_u2x = false; use_u2x = false;
goto try_again; goto try_again;
} }
@@ -227,11 +205,9 @@ try_again:
cbi(*_ucsrb, _udrie); cbi(*_ucsrb, _udrie);
} }
void HardwareSerialClass::end() void HardwareSerialClass::end() {
{
// wait for transmission of outgoing data // wait for transmission of outgoing data
while (_tx_buffer->head != _tx_buffer->tail) while (_tx_buffer->head != _tx_buffer->tail);
;
cbi(*_ucsrb, _rxen); cbi(*_ucsrb, _rxen);
cbi(*_ucsrb, _txen); cbi(*_ucsrb, _txen);
@@ -242,55 +218,42 @@ void HardwareSerialClass::end()
_rx_buffer->head = _rx_buffer->tail; _rx_buffer->head = _rx_buffer->tail;
} }
int HardwareSerialClass::available(void) int HardwareSerialClass::available(void) {
{
return (int)(SERIAL_BUFFER_SIZE + _rx_buffer->head - _rx_buffer->tail) % SERIAL_BUFFER_SIZE; return (int)(SERIAL_BUFFER_SIZE + _rx_buffer->head - _rx_buffer->tail) % SERIAL_BUFFER_SIZE;
} }
int HardwareSerialClass::peek(void) int HardwareSerialClass::peek(void) {
{
if (_rx_buffer->head == _rx_buffer->tail) if (_rx_buffer->head == _rx_buffer->tail)
{
return -1; return -1;
}
else else
{
return _rx_buffer->buffer[_rx_buffer->tail]; return _rx_buffer->buffer[_rx_buffer->tail];
} }
}
int HardwareSerialClass::read(void) int HardwareSerialClass::read(void) {
{
// if the head isn't ahead of the tail, we don't have any characters // if the head isn't ahead of the tail, we don't have any characters
if (_rx_buffer->head == _rx_buffer->tail) if (_rx_buffer->head == _rx_buffer->tail) {
{
return -1; return -1;
} }
else else {
{
unsigned char c = _rx_buffer->buffer[_rx_buffer->tail]; unsigned char c = _rx_buffer->buffer[_rx_buffer->tail];
_rx_buffer->tail = (unsigned int)(_rx_buffer->tail + 1) % SERIAL_BUFFER_SIZE; _rx_buffer->tail = (unsigned int)(_rx_buffer->tail + 1) % SERIAL_BUFFER_SIZE;
return c; return c;
} }
} }
void HardwareSerialClass::flush() void HardwareSerialClass::flush() {
{
// UDR is kept full while the buffer is not empty, so TXC triggers when EMPTY && SENT // UDR is kept full while the buffer is not empty, so TXC triggers when EMPTY && SENT
while (transmitting && !(*_ucsra & _BV(TXC0))) while (transmitting && !(*_ucsra & _BV(TXC0)));
;
transmitting = false; transmitting = false;
} }
size_t HardwareSerialClass::write(uint8_t c) size_t HardwareSerialClass::write(uint8_t c) {
{ unsigned int i = (_tx_buffer->head + 1) % SERIAL_BUFFER_SIZE;
int i = (_tx_buffer->head + 1) % SERIAL_BUFFER_SIZE;
// If the output buffer is full, there's nothing for it other than to // If the output buffer is full, there's nothing for it other than to
// wait for the interrupt handler to empty it a bit // wait for the interrupt handler to empty it a bit
// ???: return 0 here instead? // ???: return 0 here instead?
while (i == _tx_buffer->tail) while (i == _tx_buffer->tail);
;
_tx_buffer->buffer[_tx_buffer->head] = c; _tx_buffer->buffer[_tx_buffer->head] = c;
_tx_buffer->head = i; _tx_buffer->head = i;
@@ -303,8 +266,7 @@ size_t HardwareSerialClass::write(uint8_t c)
return 1; return 1;
} }
HardwareSerialClass::operator bool() HardwareSerialClass::operator bool() {
{
return true; return true;
} }
@@ -312,6 +274,6 @@ HardwareSerialClass::operator bool()
HardwareSerialClass HardwareSerial(&rx_buffer_ajg, &tx_buffer_ajg, &UBRR3H, &UBRR3L, &UCSR3A, &UCSR3B, &UCSR3C, &UDR3, RXEN3, TXEN3, RXCIE3, UDRIE3, U2X3); HardwareSerialClass HardwareSerial(&rx_buffer_ajg, &tx_buffer_ajg, &UBRR3H, &UBRR3L, &UCSR3A, &UCSR3B, &UCSR3C, &UDR3, RXEN3, TXEN3, RXCIE3, UDRIE3, U2X3);
#endif #endif
#endif #endif // if defined(UBRR3H)
#endif // whole file #endif // whole file

View File

@@ -131,8 +131,7 @@ const char newSucc[] PROGMEM = "OK";
#define HARDWARE_SERIAL_ECHOPGM(x) HARDWARE_SERIAL_PROTOCOLPGM(x) #define HARDWARE_SERIAL_ECHOPGM(x) HARDWARE_SERIAL_PROTOCOLPGM(x)
#define HARDWARE_SERIAL_ECHO(x) HARDWARE_SERIAL_PROTOCOL(x) #define HARDWARE_SERIAL_ECHO(x) HARDWARE_SERIAL_PROTOCOL(x)
FORCE_INLINE void HardwareSerialprintPGM(const char *str) FORCE_INLINE void HardwareSerialprintPGM(const char *str) {
{
char ch = pgm_read_byte(str); char ch = pgm_read_byte(str);
while (ch) while (ch)
{ {
@@ -141,4 +140,4 @@ FORCE_INLINE void HardwareSerialprintPGM(const char *str)
} }
} }
#endif #endif // ifndef hardwareserial_h