update code base to Marlin 2.0.9.2

This commit is contained in:
Stefan Kalscheuer
2021-10-03 18:57:12 +02:00
parent b9d7ba838e
commit 7077da3591
2617 changed files with 332093 additions and 103438 deletions

696
Marlin/src/module/endstops.cpp Executable file → Normal file
View File

@@ -16,7 +16,7 @@
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
@@ -27,10 +27,9 @@
#include "endstops.h"
#include "stepper.h"
#include "../MarlinCore.h"
#include "../sd/cardreader.h"
#include "temperature.h"
#include "../lcd/ultralcd.h"
#include "../lcd/marlinui.h"
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
#include HAL_PATH(../HAL, endstop_interrupts.h)
@@ -48,17 +47,21 @@
#include "../feature/joystick.h"
#endif
#if HAS_BED_PROBE
#include "probe.h"
#endif
Endstops endstops;
// private:
bool Endstops::enabled, Endstops::enabled_globally; // Initialized by settings.load()
volatile uint8_t Endstops::hit_state;
Endstops::esbits_t Endstops::live_state = 0;
volatile Endstops::endstop_mask_t Endstops::hit_state;
Endstops::endstop_mask_t Endstops::live_state = 0;
#if ENDSTOP_NOISE_THRESHOLD
Endstops::esbits_t Endstops::validated_live_state;
Endstops::endstop_mask_t Endstops::validated_live_state;
uint8_t Endstops::endstop_poll_count;
#endif
@@ -256,6 +259,66 @@ void Endstops::init() {
#endif
#endif
#if HAS_I_MIN
#if ENABLED(ENDSTOPPULLUP_IMIN)
SET_INPUT_PULLUP(I_MIN_PIN);
#elif ENABLED(ENDSTOPPULLDOWN_IMIN)
SET_INPUT_PULLDOWN(I_MIN_PIN);
#else
SET_INPUT(I_MIN_PIN);
#endif
#endif
#if HAS_I_MAX
#if ENABLED(ENDSTOPPULLUP_IMAX)
SET_INPUT_PULLUP(I_MAX_PIN);
#elif ENABLED(ENDSTOPPULLDOWN_IMAX)
SET_INPUT_PULLDOWN(I_MAX_PIN);
#else
SET_INPUT(I_MAX_PIN);
#endif
#endif
#if HAS_J_MIN
#if ENABLED(ENDSTOPPULLUP_JMIN)
SET_INPUT_PULLUP(J_MIN_PIN);
#elif ENABLED(ENDSTOPPULLDOWN_IMIN)
SET_INPUT_PULLDOWN(J_MIN_PIN);
#else
SET_INPUT(J_MIN_PIN);
#endif
#endif
#if HAS_J_MAX
#if ENABLED(ENDSTOPPULLUP_JMAX)
SET_INPUT_PULLUP(J_MAX_PIN);
#elif ENABLED(ENDSTOPPULLDOWN_JMAX)
SET_INPUT_PULLDOWN(J_MAX_PIN);
#else
SET_INPUT(J_MAX_PIN);
#endif
#endif
#if HAS_K_MIN
#if ENABLED(ENDSTOPPULLUP_KMIN)
SET_INPUT_PULLUP(K_MIN_PIN);
#elif ENABLED(ENDSTOPPULLDOWN_KMIN)
SET_INPUT_PULLDOWN(K_MIN_PIN);
#else
SET_INPUT(K_MIN_PIN);
#endif
#endif
#if HAS_K_MAX
#if ENABLED(ENDSTOPPULLUP_KMAX)
SET_INPUT_PULLUP(K_MAX_PIN);
#elif ENABLED(ENDSTOPPULLDOWN_KMIN)
SET_INPUT_PULLDOWN(K_MAX_PIN);
#else
SET_INPUT(K_MAX_PIN);
#endif
#endif
#if PIN_EXISTS(CALIBRATION)
#if ENABLED(CALIBRATION_PIN_PULLUP)
SET_INPUT_PULLUP(CALIBRATION_PIN);
@@ -266,7 +329,7 @@ void Endstops::init() {
#endif
#endif
#if HAS_CUSTOM_PROBE_PIN
#if USES_Z_MIN_PROBE_PIN
#if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
SET_INPUT_PULLUP(Z_MIN_PROBE_PIN);
#elif ENABLED(ENDSTOPPULLDOWN_ZMIN_PROBE)
@@ -276,27 +339,23 @@ void Endstops::init() {
#endif
#endif
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
setup_endstop_interrupts();
#if ENABLED(PROBE_ACTIVATION_SWITCH)
SET_INPUT(PROBE_ACTIVATION_SWITCH_PIN);
#endif
TERN_(PROBE_TARE, probe.tare());
TERN_(ENDSTOP_INTERRUPTS_FEATURE, setup_endstop_interrupts());
// Enable endstops
enable_globally(
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
true
#else
false
#endif
);
enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
} // Endstops::init
// Called at ~1KHz from Temperature ISR: Poll endstop state if required
void Endstops::poll() {
#if ENABLED(PINS_DEBUGGING)
run_monitor(); // report changes in endstop status
#endif
TERN_(PINS_DEBUGGING, run_monitor()); // Report changes in endstop status
#if DISABLED(ENDSTOP_INTERRUPTS_FEATURE)
update();
@@ -325,7 +384,7 @@ void Endstops::not_homing() {
// If the last move failed to trigger an endstop, call kill
void Endstops::validate_homing_move() {
if (trigger_state()) hit_on_purpose();
else kill(GET_TEXT(MSG_LCD_HOMING_FAILED));
else kill(GET_TEXT(MSG_KILL_HOMING_FAILED));
}
#endif
@@ -341,14 +400,9 @@ void Endstops::not_homing() {
void Endstops::resync() {
if (!abort_enabled()) return; // If endstops/probes are disabled the loop below can hang
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
update();
#else
safe_delay(2); // Wait for Temperature ISR to run at least once (runs at 1KHz)
#endif
#if ENDSTOP_NOISE_THRESHOLD
while (endstop_poll_count) safe_delay(1);
#endif
// Wait for Temperature ISR to run at least once (runs at 1KHz)
TERN(ENDSTOP_INTERRUPTS_FEATURE, update(), safe_delay(2));
while (TERN0(ENDSTOP_NOISE_THRESHOLD, endstop_poll_count)) safe_delay(1);
}
#if ENABLED(PINS_DEBUGGING)
@@ -362,48 +416,60 @@ void Endstops::resync() {
#endif
void Endstops::event_handler() {
static uint8_t prev_hit_state; // = 0
static endstop_mask_t prev_hit_state; // = 0
if (hit_state == prev_hit_state) return;
prev_hit_state = hit_state;
if (hit_state) {
#if HAS_SPI_LCD
char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' ';
#if HAS_STATUS_MESSAGE
char LINEAR_AXIS_LIST(chrX = ' ', chrY = ' ', chrZ = ' ', chrI = ' ', chrJ = ' ', chrK = ' '),
chrP = ' ';
#define _SET_STOP_CHAR(A,C) (chr## A = C)
#else
#define _SET_STOP_CHAR(A,C) ;
#define _SET_STOP_CHAR(A,C) NOOP
#endif
#define _ENDSTOP_HIT_ECHO(A,C) do{ \
SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", planner.triggered_position_mm(_AXIS(A))); \
_SET_STOP_CHAR(A,C); }while(0)
SERIAL_ECHOPGM(" " STRINGIFY(A) ":", planner.triggered_position_mm(_AXIS(A))); _SET_STOP_CHAR(A,C); }while(0)
#define _ENDSTOP_HIT_TEST(A,C) \
if (TEST(hit_state, A ##_MIN) || TEST(hit_state, A ##_MAX)) \
if (TERN0(HAS_##A##_MIN, TEST(hit_state, A##_MIN)) || TERN0(HAS_##A##_MAX, TEST(hit_state, A##_MAX))) \
_ENDSTOP_HIT_ECHO(A,C)
#define ENDSTOP_HIT_TEST_X() _ENDSTOP_HIT_TEST(X,'X')
#define ENDSTOP_HIT_TEST_Y() _ENDSTOP_HIT_TEST(Y,'Y')
#define ENDSTOP_HIT_TEST_Z() _ENDSTOP_HIT_TEST(Z,'Z')
#define ENDSTOP_HIT_TEST_I() _ENDSTOP_HIT_TEST(I,'I')
#define ENDSTOP_HIT_TEST_J() _ENDSTOP_HIT_TEST(J,'J')
#define ENDSTOP_HIT_TEST_K() _ENDSTOP_HIT_TEST(K,'K')
SERIAL_ECHO_START();
SERIAL_ECHOPGM(STR_ENDSTOPS_HIT);
ENDSTOP_HIT_TEST_X();
ENDSTOP_HIT_TEST_Y();
ENDSTOP_HIT_TEST_Z();
LINEAR_AXIS_CODE(
ENDSTOP_HIT_TEST_X(),
ENDSTOP_HIT_TEST_Y(),
ENDSTOP_HIT_TEST_Z(),
_ENDSTOP_HIT_TEST(I,'I'),
_ENDSTOP_HIT_TEST(J,'J'),
_ENDSTOP_HIT_TEST(K,'K')
);
#if HAS_CUSTOM_PROBE_PIN
#if USES_Z_MIN_PROBE_PIN
#define P_AXIS Z_AXIS
if (TEST(hit_state, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
#endif
SERIAL_EOL();
#if HAS_SPI_LCD
ui.status_printf_P(0, PSTR(S_FMT " %c %c %c %c"), GET_TEXT(MSG_LCD_ENDSTOPS), chrX, chrY, chrZ, chrP);
#endif
TERN_(HAS_STATUS_MESSAGE,
ui.status_printf_P(0,
PSTR(S_FMT GANG_N_1(LINEAR_AXES, " %c") " %c"),
GET_TEXT(MSG_LCD_ENDSTOPS),
LINEAR_AXIS_LIST(chrX, chrY, chrZ, chrI, chrJ, chrK), chrP
)
);
#if BOTH(SD_ABORT_ON_ENDSTOP_HIT, SDSUPPORT)
if (planner.abort_on_endstop_hit) {
card.endFilePrint();
card.abortFilePrintNow();
quickstop_stepper();
thermalManager.disable_all_heaters();
print_job_timer.stop();
@@ -412,17 +478,23 @@ void Endstops::event_handler() {
}
}
#if GCC_VERSION <= 50000
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
#endif
static void print_es_state(const bool is_hit, PGM_P const label=nullptr) {
if (label) serialprintPGM(label);
if (label) SERIAL_ECHOPGM_P(label);
SERIAL_ECHOPGM(": ");
serialprintPGM(is_hit ? PSTR(STR_ENDSTOP_HIT) : PSTR(STR_ENDSTOP_OPEN));
SERIAL_EOL();
SERIAL_ECHOLNPGM_P(is_hit ? PSTR(STR_ENDSTOP_HIT) : PSTR(STR_ENDSTOP_OPEN));
}
#if GCC_VERSION <= 50000
#pragma GCC diagnostic pop
#endif
void _O2 Endstops::report_states() {
#if ENABLED(BLTOUCH)
bltouch._set_SW_mode();
#endif
TERN_(BLTOUCH, bltouch._set_SW_mode());
SERIAL_ECHOLNPGM(STR_M119_REPORT);
#define ES_REPORT(S) print_es_state(READ(S##_PIN) != S##_ENDSTOP_INVERTING, PSTR(STR_##S))
#if HAS_X_MIN
@@ -473,43 +545,66 @@ void _O2 Endstops::report_states() {
#if HAS_Z4_MAX
ES_REPORT(Z4_MAX);
#endif
#if HAS_CUSTOM_PROBE_PIN
print_es_state(READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING, PSTR(STR_Z_PROBE));
#if HAS_I_MIN
ES_REPORT(I_MIN);
#endif
#if HAS_FILAMENT_SENSOR
#if NUM_RUNOUT_SENSORS == 1
print_es_state(READ(FIL_RUNOUT_PIN) != FIL_RUNOUT_INVERTING, PSTR(STR_FILAMENT_RUNOUT_SENSOR));
#else
#define _CASE_RUNOUT(N) case N: pin = FIL_RUNOUT##N##_PIN; break;
LOOP_S_LE_N(i, 1, NUM_RUNOUT_SENSORS) {
pin_t pin;
switch (i) {
default: continue;
REPEAT_S(1, INCREMENT(NUM_RUNOUT_SENSORS), _CASE_RUNOUT)
}
SERIAL_ECHOPGM(STR_FILAMENT_RUNOUT_SENSOR);
if (i > 1) SERIAL_CHAR(' ', '0' + i);
print_es_state(extDigitalRead(pin) != FIL_RUNOUT_INVERTING);
#if HAS_I_MAX
ES_REPORT(I_MAX);
#endif
#if HAS_J_MIN
ES_REPORT(J_MIN);
#endif
#if HAS_J_MAX
ES_REPORT(J_MAX);
#endif
#if HAS_K_MIN
ES_REPORT(K_MIN);
#endif
#if HAS_K_MAX
ES_REPORT(K_MAX);
#endif
#if BOTH(MARLIN_DEV_MODE, PROBE_ACTIVATION_SWITCH)
print_es_state(probe_switch_activated(), PSTR(STR_PROBE_EN));
#endif
#if USES_Z_MIN_PROBE_PIN
print_es_state(PROBE_TRIGGERED(), PSTR(STR_Z_PROBE));
#endif
#if MULTI_FILAMENT_SENSOR
#define _CASE_RUNOUT(N) case N: pin = FIL_RUNOUT##N##_PIN; state = FIL_RUNOUT##N##_STATE; break;
LOOP_S_LE_N(i, 1, NUM_RUNOUT_SENSORS) {
pin_t pin;
uint8_t state;
switch (i) {
default: continue;
REPEAT_1(NUM_RUNOUT_SENSORS, _CASE_RUNOUT)
}
#undef _CASE_RUNOUT
#endif
#endif
#if ENABLED(BLTOUCH)
bltouch._reset_SW_mode();
SERIAL_ECHOPGM(STR_FILAMENT);
if (i > 1) SERIAL_CHAR(' ', '0' + i);
print_es_state(extDigitalRead(pin) != state);
}
#undef _CASE_RUNOUT
#elif HAS_FILAMENT_SENSOR
print_es_state(READ(FIL_RUNOUT1_PIN) != FIL_RUNOUT1_STATE, PSTR(STR_FILAMENT));
#endif
#if ENABLED(JOYSTICK_DEBUG)
joystick.report();
#endif
TERN_(BLTOUCH, bltouch._reset_SW_mode());
TERN_(JOYSTICK_DEBUG, joystick.report());
} // Endstops::report_states
// The following routines are called from an ISR context. It could be the temperature ISR, the
// endstop ISR or the Stepper ISR.
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
#if HAS_DELTA_SENSORLESS_PROBING
#define __ENDSTOP(AXIS, ...) AXIS ##_MAX
#define _ENDSTOP_PIN(AXIS, ...) AXIS ##_MAX_PIN
#define _ENDSTOP_INVERTING(AXIS, ...) AXIS ##_MAX_ENDSTOP_INVERTING
#else
#define __ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
#endif
#define _ENDSTOP(AXIS, MINMAX) __ENDSTOP(AXIS, MINMAX)
// Check endstops - Could be called from Temperature ISR!
void Endstops::update() {
@@ -521,28 +616,23 @@ void Endstops::update() {
#define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT_TO(live_state, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
#define COPY_LIVE_STATE(SRC_BIT, DST_BIT) SET_BIT_TO(live_state, DST_BIT, TEST(live_state, SRC_BIT))
#if ENABLED(G38_PROBE_TARGET) && PIN_EXISTS(Z_MIN_PROBE) && !(CORE_IS_XY || CORE_IS_XZ)
// If G38 command is active check Z_MIN_PROBE for ALL movement
if (G38_move) UPDATE_ENDSTOP_BIT(Z, MIN_PROBE);
#if ENABLED(G38_PROBE_TARGET) && NONE(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY)
#define HAS_G38_PROBE 1
// For G38 moves check the probe's pin for ALL movement
if (G38_move) UPDATE_ENDSTOP_BIT(Z, TERN(USES_Z_MIN_PROBE_PIN, MIN_PROBE, MIN));
#endif
// With Dual X, endstops are only checked in the homing direction for the active extruder
#if ENABLED(DUAL_X_CARRIAGE)
#define E0_ACTIVE stepper.movement_extruder() == 0
#define X_MIN_TEST() ((X_HOME_DIR < 0 && E0_ACTIVE) || (X2_HOME_DIR < 0 && !E0_ACTIVE))
#define X_MAX_TEST() ((X_HOME_DIR > 0 && E0_ACTIVE) || (X2_HOME_DIR > 0 && !E0_ACTIVE))
#else
#define X_MIN_TEST() true
#define X_MAX_TEST() true
#endif
#define X_MIN_TEST() TERN1(DUAL_X_CARRIAGE, TERN0(X_HOME_TO_MIN, stepper.last_moved_extruder == 0) || TERN0(X2_HOME_TO_MIN, stepper.last_moved_extruder != 0))
#define X_MAX_TEST() TERN1(DUAL_X_CARRIAGE, TERN0(X_HOME_TO_MAX, stepper.last_moved_extruder == 0) || TERN0(X2_HOME_TO_MAX, stepper.last_moved_extruder != 0))
// Use HEAD for core axes, AXIS for others
#if CORE_IS_XY || CORE_IS_XZ
#if ANY(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY)
#define X_AXIS_HEAD X_HEAD
#else
#define X_AXIS_HEAD X_AXIS
#endif
#if CORE_IS_XY || CORE_IS_YZ
#if ANY(CORE_IS_XY, CORE_IS_YZ, MARKFORGED_XY)
#define Y_AXIS_HEAD Y_HEAD
#else
#define Y_AXIS_HEAD Y_AXIS
@@ -553,6 +643,10 @@ void Endstops::update() {
#define Z_AXIS_HEAD Z_AXIS
#endif
#define I_AXIS_HEAD I_AXIS
#define J_AXIS_HEAD J_AXIS
#define K_AXIS_HEAD K_AXIS
/**
* Check and update endstops
*/
@@ -600,7 +694,7 @@ void Endstops::update() {
#endif
#endif
#if HAS_Z_MIN && !Z_SPI_SENSORLESS
#if HAS_Z_MIN && NONE(Z_SPI_SENSORLESS, Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
UPDATE_ENDSTOP_BIT(Z, MIN);
#if ENABLED(Z_MULTI_ENDSTOPS)
#if HAS_Z2_MIN
@@ -625,9 +719,10 @@ void Endstops::update() {
#endif
#endif
// When closing the gap check the enabled probe
#if HAS_CUSTOM_PROBE_PIN
UPDATE_ENDSTOP_BIT(Z, MIN_PROBE);
#if HAS_BED_PROBE
// When closing the gap check the enabled probe
if (probe_switch_activated())
UPDATE_ENDSTOP_BIT(Z, TERN(USES_Z_MIN_PROBE_PIN, MIN_PROBE, MIN));
#endif
#if HAS_Z_MAX && !Z_SPI_SENSORLESS
@@ -653,12 +748,90 @@ void Endstops::update() {
COPY_LIVE_STATE(Z_MAX, Z4_MAX);
#endif
#endif
#elif !HAS_CUSTOM_PROBE_PIN || Z_MAX_PIN != Z_MIN_PROBE_PIN
#elif TERN1(USES_Z_MIN_PROBE_PIN, Z_MAX_PIN != Z_MIN_PROBE_PIN)
// If this pin isn't the bed probe it's the Z endstop
UPDATE_ENDSTOP_BIT(Z, MAX);
#endif
#endif
#if HAS_I_MIN && !I_SPI_SENSORLESS
#if ENABLED(I_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(I, MIN);
#if HAS_I2_MIN
UPDATE_ENDSTOP_BIT(I2, MAX);
#else
COPY_LIVE_STATE(I_MIN, I2_MIN);
#endif
#else
UPDATE_ENDSTOP_BIT(I, MIN);
#endif
#endif
#if HAS_I_MAX && !I_SPI_SENSORLESS
#if ENABLED(I_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(I, MAX);
#if HAS_I2_MAX
UPDATE_ENDSTOP_BIT(I2, MAX);
#else
COPY_LIVE_STATE(I_MAX, I2_MAX);
#endif
#else
UPDATE_ENDSTOP_BIT(I, MAX);
#endif
#endif
#if HAS_J_MIN && !J_SPI_SENSORLESS
#if ENABLED(J_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(J, MIN);
#if HAS_J2_MIN
UPDATE_ENDSTOP_BIT(J2, MIN);
#else
COPY_LIVE_STATE(J_MIN, J2_MIN);
#endif
#else
UPDATE_ENDSTOP_BIT(J, MIN);
#endif
#endif
#if HAS_J_MAX && !J_SPI_SENSORLESS
#if ENABLED(J_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(J, MAX);
#if HAS_J2_MAX
UPDATE_ENDSTOP_BIT(J2, MAX);
#else
COPY_LIVE_STATE(J_MAX, J2_MAX);
#endif
#else
UPDATE_ENDSTOP_BIT(J, MAX);
#endif
#endif
#if HAS_K_MIN && !K_SPI_SENSORLESS
#if ENABLED(K_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(K, MIN);
#if HAS_K2_MIN
UPDATE_ENDSTOP_BIT(K2, MIN);
#else
COPY_LIVE_STATE(K_MIN, K2_MIN);
#endif
#else
UPDATE_ENDSTOP_BIT(K, MIN);
#endif
#endif
#if HAS_K_MAX && !K_SPI_SENSORLESS
#if ENABLED(K_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(K, MAX);
#if HAS_K2_MAX
UPDATE_ENDSTOP_BIT(K2, MAX);
#else
COPY_LIVE_STATE(K_MAX, K2_MAX);
#endif
#else
UPDATE_ENDSTOP_BIT(K, MAX);
#endif
#endif
#if ENDSTOP_NOISE_THRESHOLD
/**
@@ -671,7 +844,7 @@ void Endstops::update() {
* still exist. The only way to reduce them further is to increase the number of samples.
* To reduce the chance to 1% (1/128th) requires 7 samples (adding 7ms of delay).
*/
static esbits_t old_live_state;
static endstop_mask_t old_live_state;
if (old_live_state != live_state) {
endstop_poll_count = ENDSTOP_NOISE_THRESHOLD;
old_live_state = live_state;
@@ -697,12 +870,21 @@ void Endstops::update() {
} \
}while(0)
// Core Sensorless Homing needs to test an Extra Pin
#define CORE_DIAG(QQ,A,MM) (CORE_IS_##QQ && A##_SENSORLESS && !A##_SPI_SENSORLESS && HAS_##A##_##MM)
#define PROCESS_CORE_ENDSTOP(A1,M1,A2,M2) do { \
if (TEST_ENDSTOP(_ENDSTOP(A1,M1))) { \
_ENDSTOP_HIT(A2,M2); \
planner.endstop_triggered(_AXIS(A2)); \
} \
}while(0)
// Call the endstop triggered routine for dual endstops
#define PROCESS_DUAL_ENDSTOP(A, MINMAX) do { \
const byte dual_hit = TEST_ENDSTOP(_ENDSTOP(A, MINMAX)) | (TEST_ENDSTOP(_ENDSTOP(A##2, MINMAX)) << 1); \
if (dual_hit) { \
_ENDSTOP_HIT(A, MINMAX); \
/* if not performing home or if both endstops were trigged during homing... */ \
/* if not performing home or if both endstops were triggered during homing... */ \
if (!stepper.separate_multi_axis || dual_hit == 0b11) \
planner.endstop_triggered(_AXIS(A)); \
} \
@@ -712,7 +894,7 @@ void Endstops::update() {
const byte triple_hit = TEST_ENDSTOP(_ENDSTOP(A, MINMAX)) | (TEST_ENDSTOP(_ENDSTOP(A##2, MINMAX)) << 1) | (TEST_ENDSTOP(_ENDSTOP(A##3, MINMAX)) << 2); \
if (triple_hit) { \
_ENDSTOP_HIT(A, MINMAX); \
/* if not performing home or if both endstops were trigged during homing... */ \
/* if not performing home or if both endstops were triggered during homing... */ \
if (!stepper.separate_multi_axis || triple_hit == 0b111) \
planner.endstop_triggered(_AXIS(A)); \
} \
@@ -722,7 +904,7 @@ void Endstops::update() {
const byte quad_hit = TEST_ENDSTOP(_ENDSTOP(A, MINMAX)) | (TEST_ENDSTOP(_ENDSTOP(A##2, MINMAX)) << 1) | (TEST_ENDSTOP(_ENDSTOP(A##3, MINMAX)) << 2) | (TEST_ENDSTOP(_ENDSTOP(A##4, MINMAX)) << 3); \
if (quad_hit) { \
_ENDSTOP_HIT(A, MINMAX); \
/* if not performing home or if both endstops were trigged during homing... */ \
/* if not performing home or if both endstops were triggered during homing... */ \
if (!stepper.separate_multi_axis || quad_hit == 0b1111) \
planner.endstop_triggered(_AXIS(A)); \
} \
@@ -750,117 +932,249 @@ void Endstops::update() {
#define PROCESS_ENDSTOP_Z(MINMAX) PROCESS_DUAL_ENDSTOP(Z, MINMAX)
#endif
#if ENABLED(G38_PROBE_TARGET) && PIN_EXISTS(Z_MIN_PROBE) && !(CORE_IS_XY || CORE_IS_XZ)
#if ENABLED(G38_PROBE_AWAY)
#define _G38_OPEN_STATE (G38_move >= 4)
#else
#define _G38_OPEN_STATE LOW
#endif
// If G38 command is active check Z_MIN_PROBE for ALL movement
if (G38_move && TEST_ENDSTOP(_ENDSTOP(Z, MIN_PROBE)) != _G38_OPEN_STATE) {
if (stepper.axis_is_moving(X_AXIS)) { _ENDSTOP_HIT(X, MIN); planner.endstop_triggered(X_AXIS); }
else if (stepper.axis_is_moving(Y_AXIS)) { _ENDSTOP_HIT(Y, MIN); planner.endstop_triggered(Y_AXIS); }
else if (stepper.axis_is_moving(Z_AXIS)) { _ENDSTOP_HIT(Z, MIN); planner.endstop_triggered(Z_AXIS); }
#if HAS_G38_PROBE
#define _G38_OPEN_STATE TERN(G38_PROBE_AWAY, (G38_move >= 4), LOW)
// For G38 moves check the probe's pin for ALL movement
if (G38_move && TEST_ENDSTOP(_ENDSTOP(Z, TERN(USES_Z_MIN_PROBE_PIN, MIN_PROBE, MIN))) != _G38_OPEN_STATE) {
if (stepper.axis_is_moving(X_AXIS)) { _ENDSTOP_HIT(X, TERN(X_HOME_TO_MIN, MIN, MAX)); planner.endstop_triggered(X_AXIS); }
#if HAS_Y_AXIS
else if (stepper.axis_is_moving(Y_AXIS)) { _ENDSTOP_HIT(Y, TERN(Y_HOME_TO_MIN, MIN, MAX)); planner.endstop_triggered(Y_AXIS); }
#endif
#if HAS_Z_AXIS
else if (stepper.axis_is_moving(Z_AXIS)) { _ENDSTOP_HIT(Z, TERN(Z_HOME_TO_MIN, MIN, MAX)); planner.endstop_triggered(Z_AXIS); }
#endif
G38_did_trigger = true;
}
#endif
// Now, we must signal, after validation, if an endstop limit is pressed or not
// Signal, after validation, if an endstop limit is pressed or not
if (stepper.axis_is_moving(X_AXIS)) {
if (stepper.motor_direction(X_AXIS_HEAD)) { // -direction
#if HAS_X_MIN || (X_SPI_SENSORLESS && X_HOME_DIR < 0)
#if HAS_X_MIN || (X_SPI_SENSORLESS && X_HOME_TO_MIN)
PROCESS_ENDSTOP_X(MIN);
#if CORE_DIAG(XY, Y, MIN)
PROCESS_CORE_ENDSTOP(Y,MIN,X,MIN);
#elif CORE_DIAG(XY, Y, MAX)
PROCESS_CORE_ENDSTOP(Y,MAX,X,MIN);
#elif CORE_DIAG(XZ, Z, MIN)
PROCESS_CORE_ENDSTOP(Z,MIN,X,MIN);
#elif CORE_DIAG(XZ, Z, MAX)
PROCESS_CORE_ENDSTOP(Z,MAX,X,MIN);
#endif
#endif
}
else { // +direction
#if HAS_X_MAX || (X_SPI_SENSORLESS && X_HOME_DIR > 0)
#if HAS_X_MAX || (X_SPI_SENSORLESS && X_HOME_TO_MAX)
PROCESS_ENDSTOP_X(MAX);
#endif
}
}
if (stepper.axis_is_moving(Y_AXIS)) {
if (stepper.motor_direction(Y_AXIS_HEAD)) { // -direction
#if HAS_Y_MIN || (Y_SPI_SENSORLESS && Y_HOME_DIR < 0)
PROCESS_ENDSTOP_Y(MIN);
#endif
}
else { // +direction
#if HAS_Y_MAX || (Y_SPI_SENSORLESS && Y_HOME_DIR > 0)
PROCESS_ENDSTOP_Y(MAX);
#endif
}
}
if (stepper.axis_is_moving(Z_AXIS)) {
if (stepper.motor_direction(Z_AXIS_HEAD)) { // Z -direction. Gantry down, bed up.
#if HAS_Z_MIN || (Z_SPI_SENSORLESS && Z_HOME_DIR < 0)
if (true
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
&& z_probe_enabled
#elif HAS_CUSTOM_PROBE_PIN
&& !z_probe_enabled
#endif
) PROCESS_ENDSTOP_Z(MIN);
#endif
// When closing the gap check the enabled probe
#if HAS_CUSTOM_PROBE_PIN
if (z_probe_enabled) PROCESS_ENDSTOP(Z, MIN_PROBE);
#endif
}
else { // Z +direction. Gantry up, bed down.
#if HAS_Z_MAX || (Z_SPI_SENSORLESS && Z_HOME_DIR > 0)
#if ENABLED(Z_MULTI_ENDSTOPS)
PROCESS_ENDSTOP_Z(MAX);
#elif !HAS_CUSTOM_PROBE_PIN || Z_MAX_PIN != Z_MIN_PROBE_PIN // No probe or probe is Z_MIN || Probe is not Z_MAX
PROCESS_ENDSTOP(Z, MAX);
#if CORE_DIAG(XY, Y, MIN)
PROCESS_CORE_ENDSTOP(Y,MIN,X,MAX);
#elif CORE_DIAG(XY, Y, MAX)
PROCESS_CORE_ENDSTOP(Y,MAX,X,MAX);
#elif CORE_DIAG(XZ, Z, MIN)
PROCESS_CORE_ENDSTOP(Z,MIN,X,MAX);
#elif CORE_DIAG(XZ, Z, MAX)
PROCESS_CORE_ENDSTOP(Z,MAX,X,MAX);
#endif
#endif
}
}
#if HAS_Y_AXIS
if (stepper.axis_is_moving(Y_AXIS)) {
if (stepper.motor_direction(Y_AXIS_HEAD)) { // -direction
#if HAS_Y_MIN || (Y_SPI_SENSORLESS && Y_HOME_TO_MIN)
PROCESS_ENDSTOP_Y(MIN);
#if CORE_DIAG(XY, X, MIN)
PROCESS_CORE_ENDSTOP(X,MIN,Y,MIN);
#elif CORE_DIAG(XY, X, MAX)
PROCESS_CORE_ENDSTOP(X,MAX,Y,MIN);
#elif CORE_DIAG(YZ, Z, MIN)
PROCESS_CORE_ENDSTOP(Z,MIN,Y,MIN);
#elif CORE_DIAG(YZ, Z, MAX)
PROCESS_CORE_ENDSTOP(Z,MAX,Y,MIN);
#endif
#endif
}
else { // +direction
#if HAS_Y_MAX || (Y_SPI_SENSORLESS && Y_HOME_TO_MAX)
PROCESS_ENDSTOP_Y(MAX);
#if CORE_DIAG(XY, X, MIN)
PROCESS_CORE_ENDSTOP(X,MIN,Y,MAX);
#elif CORE_DIAG(XY, X, MAX)
PROCESS_CORE_ENDSTOP(X,MAX,Y,MAX);
#elif CORE_DIAG(YZ, Z, MIN)
PROCESS_CORE_ENDSTOP(Z,MIN,Y,MAX);
#elif CORE_DIAG(YZ, Z, MAX)
PROCESS_CORE_ENDSTOP(Z,MAX,Y,MAX);
#endif
#endif
}
}
#endif
#if HAS_Z_AXIS
if (stepper.axis_is_moving(Z_AXIS)) {
if (stepper.motor_direction(Z_AXIS_HEAD)) { // Z -direction. Gantry down, bed up.
#if HAS_Z_MIN || (Z_SPI_SENSORLESS && Z_HOME_TO_MIN)
if ( TERN1(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN, z_probe_enabled)
&& TERN1(USES_Z_MIN_PROBE_PIN, !z_probe_enabled)
) PROCESS_ENDSTOP_Z(MIN);
#if CORE_DIAG(XZ, X, MIN)
PROCESS_CORE_ENDSTOP(X,MIN,Z,MIN);
#elif CORE_DIAG(XZ, X, MAX)
PROCESS_CORE_ENDSTOP(X,MAX,Z,MIN);
#elif CORE_DIAG(YZ, Y, MIN)
PROCESS_CORE_ENDSTOP(Y,MIN,Z,MIN);
#elif CORE_DIAG(YZ, Y, MAX)
PROCESS_CORE_ENDSTOP(Y,MAX,Z,MIN);
#endif
#endif
// When closing the gap check the enabled probe
#if USES_Z_MIN_PROBE_PIN
if (z_probe_enabled) PROCESS_ENDSTOP(Z, MIN_PROBE);
#endif
}
else { // Z +direction. Gantry up, bed down.
#if HAS_Z_MAX || (Z_SPI_SENSORLESS && Z_HOME_TO_MAX)
#if ENABLED(Z_MULTI_ENDSTOPS)
PROCESS_ENDSTOP_Z(MAX);
#elif TERN1(USES_Z_MIN_PROBE_PIN, Z_MAX_PIN != Z_MIN_PROBE_PIN) // No probe or probe is Z_MIN || Probe is not Z_MAX
PROCESS_ENDSTOP(Z, MAX);
#endif
#if CORE_DIAG(XZ, X, MIN)
PROCESS_CORE_ENDSTOP(X,MIN,Z,MAX);
#elif CORE_DIAG(XZ, X, MAX)
PROCESS_CORE_ENDSTOP(X,MAX,Z,MAX);
#elif CORE_DIAG(YZ, Y, MIN)
PROCESS_CORE_ENDSTOP(Y,MIN,Z,MAX);
#elif CORE_DIAG(YZ, Y, MAX)
PROCESS_CORE_ENDSTOP(Y,MAX,Z,MAX);
#endif
#endif
}
}
#endif
#if LINEAR_AXES >= 4
if (stepper.axis_is_moving(I_AXIS)) {
if (stepper.motor_direction(I_AXIS_HEAD)) { // -direction
#if HAS_I_MIN || (I_SPI_SENSORLESS && I_HOME_TO_MIN)
PROCESS_ENDSTOP(I, MIN);
#endif
}
else { // +direction
#if HAS_I_MAX || (I_SPI_SENSORLESS && I_HOME_TO_MAX)
PROCESS_ENDSTOP(I, MAX);
#endif
}
}
#endif
#if LINEAR_AXES >= 5
if (stepper.axis_is_moving(J_AXIS)) {
if (stepper.motor_direction(J_AXIS_HEAD)) { // -direction
#if HAS_J_MIN || (J_SPI_SENSORLESS && J_HOME_TO_MIN)
PROCESS_ENDSTOP(J, MIN);
#endif
}
else { // +direction
#if HAS_J_MAX || (J_SPI_SENSORLESS && J_HOME_TO_MAX)
PROCESS_ENDSTOP(J, MAX);
#endif
}
}
#endif
#if LINEAR_AXES >= 6
if (stepper.axis_is_moving(K_AXIS)) {
if (stepper.motor_direction(K_AXIS_HEAD)) { // -direction
#if HAS_K_MIN || (K_SPI_SENSORLESS && K_HOME_TO_MIN)
PROCESS_ENDSTOP(K, MIN);
#endif
}
else { // +direction
#if HAS_K_MAX || (K_SPI_SENSORLESS && K_HOME_TO_MAX)
PROCESS_ENDSTOP(K, MAX);
#endif
}
}
#endif
} // Endstops::update()
#if ENABLED(SPI_ENDSTOPS)
#define X_STOP (X_HOME_DIR < 0 ? X_MIN : X_MAX)
#define Y_STOP (Y_HOME_DIR < 0 ? Y_MIN : Y_MAX)
#define Z_STOP (Z_HOME_DIR < 0 ? Z_MIN : Z_MAX)
bool Endstops::tmc_spi_homing_check() {
bool hit = false;
#if X_SPI_SENSORLESS
if (tmc_spi_homing.x && stepperX.test_stall_status()) {
SBI(live_state, X_STOP);
if (tmc_spi_homing.x && (stepperX.test_stall_status()
#if ANY(CORE_IS_XY, MARKFORGED_XY) && Y_SPI_SENSORLESS
|| stepperY.test_stall_status()
#elif CORE_IS_XZ && Z_SPI_SENSORLESS
|| stepperZ.test_stall_status()
#endif
)) {
SBI(live_state, X_ENDSTOP);
hit = true;
}
#endif
#if Y_SPI_SENSORLESS
if (tmc_spi_homing.y && stepperY.test_stall_status()) {
SBI(live_state, Y_STOP);
if (tmc_spi_homing.y && (stepperY.test_stall_status()
#if ANY(CORE_IS_XY, MARKFORGED_XY) && X_SPI_SENSORLESS
|| stepperX.test_stall_status()
#elif CORE_IS_YZ && Z_SPI_SENSORLESS
|| stepperZ.test_stall_status()
#endif
)) {
SBI(live_state, Y_ENDSTOP);
hit = true;
}
#endif
#if Z_SPI_SENSORLESS
if (tmc_spi_homing.z && stepperZ.test_stall_status()) {
SBI(live_state, Z_STOP);
if (tmc_spi_homing.z && (stepperZ.test_stall_status()
#if CORE_IS_XZ && X_SPI_SENSORLESS
|| stepperX.test_stall_status()
#elif CORE_IS_YZ && Y_SPI_SENSORLESS
|| stepperY.test_stall_status()
#endif
)) {
SBI(live_state, Z_ENDSTOP);
hit = true;
}
#endif
#if I_SPI_SENSORLESS
if (tmc_spi_homing.i && stepperI.test_stall_status()) {
SBI(live_state, I_ENDSTOP);
hit = true;
}
#endif
#if J_SPI_SENSORLESS
if (tmc_spi_homing.j && stepperJ.test_stall_status()) {
SBI(live_state, J_ENDSTOP);
hit = true;
}
#endif
#if K_SPI_SENSORLESS
if (tmc_spi_homing.k && stepperK.test_stall_status()) {
SBI(live_state, K_ENDSTOP);
hit = true;
}
#endif
if (TERN0(ENDSTOP_INTERRUPTS_FEATURE, hit)) update();
return hit;
}
void Endstops::clear_endstop_state() {
#if X_SPI_SENSORLESS
CBI(live_state, X_STOP);
#endif
#if Y_SPI_SENSORLESS
CBI(live_state, Y_STOP);
#endif
#if Z_SPI_SENSORLESS
CBI(live_state, Z_STOP);
#endif
TERN_(X_SPI_SENSORLESS, CBI(live_state, X_ENDSTOP));
TERN_(Y_SPI_SENSORLESS, CBI(live_state, Y_ENDSTOP));
TERN_(Z_SPI_SENSORLESS, CBI(live_state, Z_ENDSTOP));
TERN_(I_SPI_SENSORLESS, CBI(live_state, I_ENDSTOP));
TERN_(J_SPI_SENSORLESS, CBI(live_state, J_ENDSTOP));
TERN_(K_SPI_SENSORLESS, CBI(live_state, K_ENDSTOP));
}
#endif // SPI_ENDSTOPS
@@ -937,9 +1251,27 @@ void Endstops::update() {
#if HAS_Z4_MAX
ES_GET_STATE(Z4_MAX);
#endif
#if HAS_I_MAX
ES_GET_STATE(I_MAX);
#endif
#if HAS_I_MIN
ES_GET_STATE(I_MIN);
#endif
#if HAS_J_MAX
ES_GET_STATE(J_MAX);
#endif
#if HAS_J_MIN
ES_GET_STATE(J_MIN);
#endif
#if HAS_K_MAX
ES_GET_STATE(K_MAX);
#endif
#if HAS_K_MIN
ES_GET_STATE(K_MIN);
#endif
uint16_t endstop_change = live_state_local ^ old_live_state_local;
#define ES_REPORT_CHANGE(S) if (TEST(endstop_change, S)) SERIAL_ECHOPAIR(" " STRINGIFY(S) ":", TEST(live_state_local, S))
#define ES_REPORT_CHANGE(S) if (TEST(endstop_change, S)) SERIAL_ECHOPGM(" " STRINGIFY(S) ":", TEST(live_state_local, S))
if (endstop_change) {
#if HAS_X_MIN
@@ -993,6 +1325,24 @@ void Endstops::update() {
#if HAS_Z4_MAX
ES_REPORT_CHANGE(Z4_MAX);
#endif
#if HAS_I_MIN
ES_REPORT_CHANGE(I_MIN);
#endif
#if HAS_I_MAX
ES_REPORT_CHANGE(I_MAX);
#endif
#if HAS_J_MIN
ES_REPORT_CHANGE(J_MIN);
#endif
#if HAS_J_MAX
ES_REPORT_CHANGE(J_MAX);
#endif
#if HAS_K_MIN
ES_REPORT_CHANGE(K_MIN);
#endif
#if HAS_K_MAX
ES_REPORT_CHANGE(K_MAX);
#endif
SERIAL_ECHOLNPGM("\n");
analogWrite(pin_t(LED_PIN), local_LED_status);
local_LED_status ^= 255;