update code base to Marlin 2.0.9.2
This commit is contained in:
293
Marlin/src/module/stepper.h
Executable file → Normal file
293
Marlin/src/module/stepper.h
Executable file → Normal file
@@ -16,7 +16,7 @@
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
@@ -38,7 +38,7 @@
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
* along with Grbl. If not, see <https://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "../inc/MarlinConfig.h"
|
||||
@@ -133,27 +133,6 @@
|
||||
|
||||
#endif
|
||||
|
||||
// Add time for each stepper
|
||||
#if HAS_X_STEP
|
||||
#define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES
|
||||
#else
|
||||
#define ISR_X_STEPPER_CYCLES 0UL
|
||||
#endif
|
||||
#if HAS_Y_STEP
|
||||
#define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES
|
||||
#else
|
||||
#define ISR_START_Y_STEPPER_CYCLES 0UL
|
||||
#define ISR_Y_STEPPER_CYCLES 0UL
|
||||
#endif
|
||||
#if HAS_Z_STEP
|
||||
#define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES
|
||||
#else
|
||||
#define ISR_Z_STEPPER_CYCLES 0UL
|
||||
#endif
|
||||
|
||||
// E is always interpolated, even for mixing extruders
|
||||
#define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES
|
||||
|
||||
// If linear advance is disabled, the loop also handles them
|
||||
#if DISABLED(LIN_ADVANCE) && ENABLED(MIXING_EXTRUDER)
|
||||
#define ISR_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
|
||||
@@ -161,8 +140,31 @@
|
||||
#define ISR_MIXING_STEPPER_CYCLES 0UL
|
||||
#endif
|
||||
|
||||
// Add time for each stepper
|
||||
#if HAS_X_STEP
|
||||
#define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES
|
||||
#endif
|
||||
#if HAS_Y_STEP
|
||||
#define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES
|
||||
#endif
|
||||
#if HAS_Z_STEP
|
||||
#define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES
|
||||
#endif
|
||||
#if HAS_I_STEP
|
||||
#define ISR_I_STEPPER_CYCLES ISR_STEPPER_CYCLES
|
||||
#endif
|
||||
#if HAS_J_STEP
|
||||
#define ISR_J_STEPPER_CYCLES ISR_STEPPER_CYCLES
|
||||
#endif
|
||||
#if HAS_K_STEP
|
||||
#define ISR_K_STEPPER_CYCLES ISR_STEPPER_CYCLES
|
||||
#endif
|
||||
#if HAS_EXTRUDERS
|
||||
#define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES // E is always interpolated, even for mixing extruders
|
||||
#endif
|
||||
|
||||
// And the total minimum loop time, not including the base
|
||||
#define MIN_ISR_LOOP_CYCLES (ISR_X_STEPPER_CYCLES + ISR_Y_STEPPER_CYCLES + ISR_Z_STEPPER_CYCLES + ISR_E_STEPPER_CYCLES + ISR_MIXING_STEPPER_CYCLES)
|
||||
#define MIN_ISR_LOOP_CYCLES (ISR_MIXING_STEPPER_CYCLES LOGICAL_AXIS_GANG(+ ISR_E_STEPPER_CYCLES, + ISR_X_STEPPER_CYCLES, + ISR_Y_STEPPER_CYCLES, + ISR_Z_STEPPER_CYCLES, + ISR_I_STEPPER_CYCLES, + ISR_J_STEPPER_CYCLES, + ISR_K_STEPPER_CYCLES))
|
||||
|
||||
// Calculate the minimum MPU cycles needed per pulse to enforce, limited to the max stepper rate
|
||||
#define _MIN_STEPPER_PULSE_CYCLES(N) _MAX(uint32_t((F_CPU) / (MAXIMUM_STEPPER_RATE)), ((F_CPU) / 500000UL) * (N))
|
||||
@@ -191,7 +193,6 @@
|
||||
#error "Expected at least one of MINIMUM_STEPPER_PULSE or MAXIMUM_STEPPER_RATE to be defined"
|
||||
#endif
|
||||
|
||||
|
||||
// But the user could be enforcing a minimum time, so the loop time is
|
||||
#define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES))
|
||||
|
||||
@@ -230,8 +231,75 @@
|
||||
#define MAX_STEP_ISR_FREQUENCY_2X ((F_CPU) / ISR_EXECUTION_CYCLES(2))
|
||||
#define MAX_STEP_ISR_FREQUENCY_1X ((F_CPU) / ISR_EXECUTION_CYCLES(1))
|
||||
|
||||
// The minimum allowable frequency for step smoothing will be 1/10 of the maximum nominal frequency (in Hz)
|
||||
#define MIN_STEP_ISR_FREQUENCY MAX_STEP_ISR_FREQUENCY_1X
|
||||
// The minimum step ISR rate used by ADAPTIVE_STEP_SMOOTHING to target 50% CPU usage
|
||||
// This does not account for the possibility of multi-stepping.
|
||||
// Perhaps DISABLE_MULTI_STEPPING should be required with ADAPTIVE_STEP_SMOOTHING.
|
||||
#define MIN_STEP_ISR_FREQUENCY (MAX_STEP_ISR_FREQUENCY_1X / 2)
|
||||
|
||||
#define ENABLE_COUNT (LINEAR_AXES + E_STEPPERS)
|
||||
typedef IF<(ENABLE_COUNT > 8), uint16_t, uint8_t>::type ena_mask_t;
|
||||
|
||||
// Axis flags type, for enabled state or other simple state
|
||||
typedef struct {
|
||||
union {
|
||||
ena_mask_t bits;
|
||||
struct {
|
||||
bool LINEAR_AXIS_LIST(X:1, Y:1, Z:1, I:1, J:1, K:1);
|
||||
#if HAS_EXTRUDERS
|
||||
bool LIST_N(EXTRUDERS, E0:1, E1:1, E2:1, E3:1, E4:1, E5:1, E6:1, E7:1);
|
||||
#endif
|
||||
};
|
||||
};
|
||||
constexpr ena_mask_t linear_bits() { return _BV(LINEAR_AXES) - 1; }
|
||||
constexpr ena_mask_t e_bits() { return (_BV(EXTRUDERS) - 1) << LINEAR_AXES; }
|
||||
} axis_flags_t;
|
||||
|
||||
// All the stepper enable pins
|
||||
constexpr pin_t ena_pins[] = {
|
||||
LINEAR_AXIS_LIST(X_ENABLE_PIN, Y_ENABLE_PIN, Z_ENABLE_PIN, I_ENABLE_PIN, J_ENABLE_PIN, K_ENABLE_PIN),
|
||||
LIST_N(E_STEPPERS, E0_ENABLE_PIN, E1_ENABLE_PIN, E2_ENABLE_PIN, E3_ENABLE_PIN, E4_ENABLE_PIN, E5_ENABLE_PIN, E6_ENABLE_PIN, E7_ENABLE_PIN)
|
||||
};
|
||||
|
||||
// Index of the axis or extruder element in a combined array
|
||||
constexpr uint8_t index_of_axis(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
|
||||
return uint8_t(axis) + (E_TERN0(axis < LINEAR_AXES ? 0 : eindex));
|
||||
}
|
||||
//#define __IAX_N(N,V...) _IAX_##N(V)
|
||||
//#define _IAX_N(N,V...) __IAX_N(N,V)
|
||||
//#define _IAX_1(A) index_of_axis(A)
|
||||
//#define _IAX_2(A,B) index_of_axis(A E_OPTARG(B))
|
||||
//#define INDEX_OF_AXIS(V...) _IAX_N(TWO_ARGS(V),V)
|
||||
|
||||
#define INDEX_OF_AXIS(A,V...) index_of_axis(A E_OPTARG(V+0))
|
||||
|
||||
// Bit mask for a matching enable pin, or 0
|
||||
constexpr ena_mask_t ena_same(const uint8_t a, const uint8_t b) {
|
||||
return ena_pins[a] == ena_pins[b] ? _BV(b) : 0;
|
||||
}
|
||||
|
||||
// Recursively get the enable overlaps mask for a given linear axis or extruder
|
||||
constexpr ena_mask_t ena_overlap(const uint8_t a=0, const uint8_t b=0) {
|
||||
return b >= ENABLE_COUNT ? 0 : (a == b ? 0 : ena_same(a, b)) | ena_overlap(a, b + 1);
|
||||
}
|
||||
|
||||
// Recursively get whether there's any overlap at all
|
||||
constexpr bool any_enable_overlap(const uint8_t a=0) {
|
||||
return a >= ENABLE_COUNT ? false : ena_overlap(a) || any_enable_overlap(a + 1);
|
||||
}
|
||||
|
||||
// Array of axes that overlap with each
|
||||
// TODO: Consider cases where >=2 steppers are used by a linear axis or extruder
|
||||
// (e.g., CoreXY, Dual XYZ, or E with multiple steppers, etc.).
|
||||
constexpr ena_mask_t enable_overlap[] = {
|
||||
#define _OVERLAP(N) ena_overlap(INDEX_OF_AXIS(AxisEnum(N))),
|
||||
REPEAT(LINEAR_AXES, _OVERLAP)
|
||||
#if HAS_EXTRUDERS
|
||||
#define _E_OVERLAP(N) ena_overlap(INDEX_OF_AXIS(E_AXIS, N)),
|
||||
REPEAT(E_STEPPERS, _E_OVERLAP)
|
||||
#endif
|
||||
};
|
||||
|
||||
//static_assert(!any_enable_overlap(), "There is some overlap.");
|
||||
|
||||
//
|
||||
// Stepper class definition
|
||||
@@ -240,34 +308,44 @@ class Stepper {
|
||||
|
||||
public:
|
||||
|
||||
#if HAS_EXTRA_ENDSTOPS || ENABLED(Z_STEPPER_AUTO_ALIGN)
|
||||
#if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
|
||||
static bool separate_multi_axis;
|
||||
#endif
|
||||
|
||||
#if HAS_MOTOR_CURRENT_PWM
|
||||
#ifndef PWM_MOTOR_CURRENT
|
||||
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
|
||||
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
|
||||
#if HAS_MOTOR_CURRENT_PWM
|
||||
#ifndef PWM_MOTOR_CURRENT
|
||||
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
|
||||
#endif
|
||||
#define MOTOR_CURRENT_COUNT LINEAR_AXES
|
||||
#elif HAS_MOTOR_CURRENT_SPI
|
||||
static constexpr uint32_t digipot_count[] = DIGIPOT_MOTOR_CURRENT;
|
||||
#define MOTOR_CURRENT_COUNT COUNT(Stepper::digipot_count)
|
||||
#endif
|
||||
static uint32_t motor_current_setting[3];
|
||||
static bool initialized;
|
||||
static uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load()
|
||||
#endif
|
||||
|
||||
// Last-moved extruder, as set when the last movement was fetched from planner
|
||||
#if HAS_MULTI_EXTRUDER
|
||||
static uint8_t last_moved_extruder;
|
||||
#else
|
||||
static constexpr uint8_t last_moved_extruder = 0;
|
||||
#endif
|
||||
|
||||
#if HAS_FREEZE_PIN
|
||||
static bool frozen; // Set this flag to instantly freeze motion
|
||||
#endif
|
||||
|
||||
private:
|
||||
|
||||
static block_t* current_block; // A pointer to the block currently being traced
|
||||
|
||||
static uint8_t last_direction_bits, // The next stepping-bits to be output
|
||||
axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
|
||||
static axis_bits_t last_direction_bits, // The next stepping-bits to be output
|
||||
axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
|
||||
|
||||
static bool abort_current_block; // Signals to the stepper that current block should be aborted
|
||||
|
||||
// Last-moved extruder, as set when the last movement was fetched from planner
|
||||
#if EXTRUDERS < 2
|
||||
static constexpr uint8_t last_moved_extruder = 0;
|
||||
#elif DISABLED(MIXING_EXTRUDER)
|
||||
static uint8_t last_moved_extruder;
|
||||
#endif
|
||||
|
||||
#if ENABLED(X_DUAL_ENDSTOPS)
|
||||
static bool locked_X_motor, locked_X2_motor;
|
||||
#endif
|
||||
@@ -303,7 +381,7 @@ class Stepper {
|
||||
decelerate_after, // The point from where we need to start decelerating
|
||||
step_event_count; // The total event count for the current block
|
||||
|
||||
#if EXTRUDERS > 1 || ENABLED(MIXING_EXTRUDER)
|
||||
#if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
|
||||
static uint8_t stepper_extruder;
|
||||
#else
|
||||
static constexpr uint8_t stepper_extruder = 0;
|
||||
@@ -334,28 +412,44 @@ class Stepper {
|
||||
static uint32_t nextBabystepISR;
|
||||
#endif
|
||||
|
||||
#if ENABLED(DIRECT_STEPPING)
|
||||
static page_step_state_t page_step_state;
|
||||
#endif
|
||||
|
||||
static int32_t ticks_nominal;
|
||||
#if DISABLED(S_CURVE_ACCELERATION)
|
||||
static uint32_t acc_step_rate; // needed for deceleration start point
|
||||
#endif
|
||||
|
||||
//
|
||||
// Exact steps at which an endstop was triggered
|
||||
//
|
||||
static xyz_long_t endstops_trigsteps;
|
||||
|
||||
//
|
||||
// Positions of stepper motors, in step units
|
||||
//
|
||||
static xyze_long_t count_position;
|
||||
|
||||
//
|
||||
// Current direction of stepper motors (+1 or -1)
|
||||
//
|
||||
// Current stepper motor directions (+1 or -1)
|
||||
static xyze_int8_t count_direction;
|
||||
|
||||
public:
|
||||
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
|
||||
|
||||
typedef struct {
|
||||
bool enabled; // Trapezoid needed flag (i.e., laser on, planner in control)
|
||||
uint8_t cur_power; // Current laser power
|
||||
bool cruise_set; // Power set up for cruising?
|
||||
|
||||
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
|
||||
uint16_t till_update; // Countdown to the next update
|
||||
#else
|
||||
uint32_t last_step_count, // Step count from the last update
|
||||
acc_step_count; // Bresenham counter for laser accel/decel
|
||||
#endif
|
||||
} stepper_laser_t;
|
||||
|
||||
static stepper_laser_t laser_trap;
|
||||
|
||||
#endif
|
||||
|
||||
public:
|
||||
// Initialize stepper hardware
|
||||
static void init();
|
||||
|
||||
@@ -400,20 +494,30 @@ class Stepper {
|
||||
#endif
|
||||
|
||||
// Check if the given block is busy or not - Must not be called from ISR contexts
|
||||
static bool is_block_busy(const block_t* const block);
|
||||
static bool is_block_busy(const block_t * const block);
|
||||
|
||||
// Get the position of a stepper, in steps
|
||||
static int32_t position(const AxisEnum axis);
|
||||
|
||||
// Set the current position in steps
|
||||
static void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e);
|
||||
static inline void set_position(const xyze_long_t &abce) { set_position(abce.a, abce.b, abce.c, abce.e); }
|
||||
static void set_position(const xyze_long_t &spos);
|
||||
static void set_axis_position(const AxisEnum a, const int32_t &v);
|
||||
|
||||
// Report the positions of the steppers, in steps
|
||||
static void report_a_position(const xyz_long_t &pos);
|
||||
static void report_positions();
|
||||
|
||||
// Discard current block and free any resources
|
||||
FORCE_INLINE static void discard_current_block() {
|
||||
#if ENABLED(DIRECT_STEPPING)
|
||||
if (IS_PAGE(current_block))
|
||||
page_manager.free_page(current_block->page_idx);
|
||||
#endif
|
||||
current_block = nullptr;
|
||||
axis_did_move = 0;
|
||||
planner.release_current_block();
|
||||
}
|
||||
|
||||
// Quickly stop all steppers
|
||||
FORCE_INLINE static void quick_stop() { abort_current_block = true; }
|
||||
|
||||
@@ -423,24 +527,15 @@ class Stepper {
|
||||
// The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
|
||||
FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return TEST(axis_did_move, axis); }
|
||||
|
||||
// The extruder associated to the last movement
|
||||
FORCE_INLINE static uint8_t movement_extruder() {
|
||||
return (0
|
||||
#if EXTRUDERS > 1 && DISABLED(MIXING_EXTRUDER)
|
||||
+ last_moved_extruder
|
||||
#endif
|
||||
);
|
||||
}
|
||||
|
||||
// Handle a triggered endstop
|
||||
static void endstop_triggered(const AxisEnum axis);
|
||||
|
||||
// Triggered position of an axis in steps
|
||||
static int32_t triggered_position(const AxisEnum axis);
|
||||
|
||||
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
|
||||
static void digitalPotWrite(const int16_t address, const int16_t value);
|
||||
static void digipot_current(const uint8_t driver, const int16_t current);
|
||||
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
|
||||
static void set_digipot_value_spi(const int16_t address, const int16_t value);
|
||||
static void set_digipot_current(const uint8_t driver, const int16_t current);
|
||||
#endif
|
||||
|
||||
#if HAS_MICROSTEPS
|
||||
@@ -449,7 +544,7 @@ class Stepper {
|
||||
static void microstep_readings();
|
||||
#endif
|
||||
|
||||
#if HAS_EXTRA_ENDSTOPS || ENABLED(Z_STEPPER_AUTO_ALIGN)
|
||||
#if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
|
||||
FORCE_INLINE static void set_separate_multi_axis(const bool state) { separate_multi_axis = state; }
|
||||
#endif
|
||||
#if ENABLED(X_DUAL_ENDSTOPS)
|
||||
@@ -461,7 +556,7 @@ class Stepper {
|
||||
FORCE_INLINE static void set_y2_lock(const bool state) { locked_Y2_motor = state; }
|
||||
#endif
|
||||
#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
|
||||
FORCE_INLINE static void set_z_lock(const bool state) { locked_Z_motor = state; }
|
||||
FORCE_INLINE static void set_z1_lock(const bool state) { locked_Z_motor = state; }
|
||||
FORCE_INLINE static void set_z2_lock(const bool state) { locked_Z2_motor = state; }
|
||||
#if NUM_Z_STEPPER_DRIVERS >= 3
|
||||
FORCE_INLINE static void set_z3_lock(const bool state) { locked_Z3_motor = state; }
|
||||
@@ -469,6 +564,16 @@ class Stepper {
|
||||
FORCE_INLINE static void set_z4_lock(const bool state) { locked_Z4_motor = state; }
|
||||
#endif
|
||||
#endif
|
||||
static inline void set_all_z_lock(const bool lock, const int8_t except=-1) {
|
||||
set_z1_lock(lock ^ (except == 0));
|
||||
set_z2_lock(lock ^ (except == 1));
|
||||
#if NUM_Z_STEPPER_DRIVERS >= 3
|
||||
set_z3_lock(lock ^ (except == 2));
|
||||
#if NUM_Z_STEPPER_DRIVERS >= 4
|
||||
set_z4_lock(lock ^ (except == 3));
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(BABYSTEPPING)
|
||||
@@ -479,16 +584,58 @@ class Stepper {
|
||||
static void refresh_motor_power();
|
||||
#endif
|
||||
|
||||
// Set direction bits for all steppers
|
||||
static axis_flags_t axis_enabled; // Axis stepper(s) ENABLED states
|
||||
|
||||
static inline bool axis_is_enabled(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
|
||||
return TEST(axis_enabled.bits, INDEX_OF_AXIS(axis, eindex));
|
||||
}
|
||||
static inline void mark_axis_enabled(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
|
||||
SBI(axis_enabled.bits, INDEX_OF_AXIS(axis, eindex));
|
||||
}
|
||||
static inline void mark_axis_disabled(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
|
||||
CBI(axis_enabled.bits, INDEX_OF_AXIS(axis, eindex));
|
||||
}
|
||||
static inline bool can_axis_disable(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
|
||||
return !any_enable_overlap() || !(axis_enabled.bits & enable_overlap[INDEX_OF_AXIS(axis, eindex)]);
|
||||
}
|
||||
|
||||
static void enable_axis(const AxisEnum axis);
|
||||
static bool disable_axis(const AxisEnum axis);
|
||||
|
||||
#if HAS_EXTRUDERS
|
||||
static void enable_extruder(E_TERN_(const uint8_t eindex=0));
|
||||
static bool disable_extruder(E_TERN_(const uint8_t eindex=0));
|
||||
static void enable_e_steppers();
|
||||
static void disable_e_steppers();
|
||||
#else
|
||||
static inline void enable_extruder() {}
|
||||
static inline bool disable_extruder() {}
|
||||
static inline void enable_e_steppers() {}
|
||||
static inline void disable_e_steppers() {}
|
||||
#endif
|
||||
|
||||
#define ENABLE_EXTRUDER(N) enable_extruder(E_TERN_(N))
|
||||
#define DISABLE_EXTRUDER(N) disable_extruder(E_TERN_(N))
|
||||
#define AXIS_IS_ENABLED(N,V...) axis_is_enabled(N E_OPTARG(#V))
|
||||
|
||||
static void enable_all_steppers();
|
||||
static void disable_all_steppers();
|
||||
|
||||
// Update direction states for all steppers
|
||||
static void set_directions();
|
||||
|
||||
// Set direction bits and update all stepper DIR states
|
||||
static void set_directions(const axis_bits_t bits) {
|
||||
last_direction_bits = bits;
|
||||
set_directions();
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
// Set the current position in steps
|
||||
static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e);
|
||||
FORCE_INLINE static void _set_position(const abce_long_t &spos) { _set_position(spos.a, spos.b, spos.c, spos.e); }
|
||||
static void _set_position(const abce_long_t &spos);
|
||||
|
||||
FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate, uint8_t* loops) {
|
||||
FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate, uint8_t *loops) {
|
||||
uint32_t timer;
|
||||
|
||||
// Scale the frequency, as requested by the caller
|
||||
@@ -525,7 +672,7 @@ class Stepper {
|
||||
// In case of high-performance processor, it is able to calculate in real-time
|
||||
timer = uint32_t(STEPPER_TIMER_RATE) / step_rate;
|
||||
#else
|
||||
constexpr uint32_t min_step_rate = F_CPU / 500000U;
|
||||
constexpr uint32_t min_step_rate = (F_CPU) / 500000U;
|
||||
NOLESS(step_rate, min_step_rate);
|
||||
step_rate -= min_step_rate; // Correct for minimal speed
|
||||
if (step_rate >= (8 * 256)) { // higher step rate
|
||||
@@ -553,7 +700,7 @@ class Stepper {
|
||||
static int32_t _eval_bezier_curve(const uint32_t curr_step);
|
||||
#endif
|
||||
|
||||
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
|
||||
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
|
||||
static void digipot_init();
|
||||
#endif
|
||||
|
||||
|
Reference in New Issue
Block a user