Merge upstream changes from Marlin 2.1.1

This commit is contained in:
Stefan Kalscheuer
2022-09-03 09:23:32 +02:00
parent 626283aadb
commit 986e416c7f
1610 changed files with 73839 additions and 40857 deletions

View File

@@ -40,31 +40,27 @@
* All rights reserved.
*/
// Useful for RTD debugging.
//#define MAX31865_DEBUG
//#define MAX31865_DEBUG_SPI
#include "../inc/MarlinConfig.h"
#if HAS_MAX31865 && !USE_ADAFRUIT_MAX31865
//#include <SoftwareSPI.h> // TODO: switch to SPIclass/SoftSPI
#include "MAX31865.h"
#ifndef MAX31865_MIN_SAMPLING_TIME_MSEC
#define MAX31865_MIN_SAMPLING_TIME_MSEC 0
#endif
#define DEBUG_OUT ENABLED(DEBUG_MAX31865)
#include "../core/debug_out.h"
// The maximum speed the MAX31865 can do is 5 MHz
SPISettings MAX31865::spiConfig = SPISettings(
#if defined(TARGET_LPC1768)
SPI_QUARTER_SPEED
#elif defined(ARDUINO_ARCH_STM32)
SPI_CLOCK_DIV4
#else
500000
#endif
, MSBFIRST
, SPI_MODE_1 // CPOL0 CPHA1
TERN(TARGET_LPC1768, SPI_QUARTER_SPEED, TERN(ARDUINO_ARCH_STM32, SPI_CLOCK_DIV4, 500000)),
MSBFIRST,
SPI_MODE1 // CPOL0 CPHA1
);
#ifndef LARGE_PINMAP
#if DISABLED(LARGE_PINMAP)
/**
* Create the interface object using software (bitbang) SPI for PIN values
@@ -76,10 +72,10 @@ SPISettings MAX31865::spiConfig = SPISettings(
* @param spi_clk the SPI clock pin to use
*/
MAX31865::MAX31865(int8_t spi_cs, int8_t spi_mosi, int8_t spi_miso, int8_t spi_clk) {
_cs = spi_cs;
_mosi = spi_mosi;
_miso = spi_miso;
_sclk = spi_clk;
cselPin = spi_cs;
mosiPin = spi_mosi;
misoPin = spi_miso;
sclkPin = spi_clk;
}
/**
@@ -89,11 +85,11 @@ SPISettings MAX31865::spiConfig = SPISettings(
* @param spi_cs the SPI CS pin to use along with the default SPI device
*/
MAX31865::MAX31865(int8_t spi_cs) {
_cs = spi_cs;
_sclk = _miso = _mosi = -1;
cselPin = spi_cs;
sclkPin = misoPin = mosiPin = -1;
}
#else
#else // LARGE_PINMAP
/**
* Create the interface object using software (bitbang) SPI for PIN values
@@ -106,13 +102,11 @@ SPISettings MAX31865::spiConfig = SPISettings(
* @param spi_clk the SPI clock pin to use
* @param pin_mapping set to 1 for positive pin values
*/
MAX31865::MAX31865(uint32_t spi_cs, uint32_t spi_mosi,
uint32_t spi_miso, uint32_t spi_clk,
uint8_t pin_mapping) {
_cs = spi_cs;
_mosi = spi_mosi;
_miso = spi_miso;
_sclk = spi_clk;
MAX31865::MAX31865(uint32_t spi_cs, uint32_t spi_mosi, uint32_t spi_miso, uint32_t spi_clk, uint8_t pin_mapping) {
cselPin = spi_cs;
mosiPin = spi_mosi;
misoPin = spi_miso;
sclkPin = spi_clk;
}
/**
@@ -124,156 +118,247 @@ SPISettings MAX31865::spiConfig = SPISettings(
* @param pin_mapping set to 1 for positive pin values
*/
MAX31865::MAX31865(uint32_t spi_cs, uint8_t pin_mapping) {
_cs = spi_cs;
_sclk = _miso = _mosi = -1UL; //-1UL or 0xFFFFFFFF or 4294967295
cselPin = spi_cs;
sclkPin = misoPin = mosiPin = -1UL; //-1UL or 0xFFFFFFFF or 4294967295
}
#endif // LARGE_PINMAP
/**
*
* Instance & Class methods
*
*/
/**
* Initialize the SPI interface and set the number of RTD wires used
*
* @param wires The number of wires in enum format. Can be MAX31865_2WIRE, MAX31865_3WIRE, or MAX31865_4WIRE.
* @param zero The resistance of the RTD at 0 degC, in ohms.
* @param ref The resistance of the reference resistor, in ohms.
* @param wires The number of wires as an enum: MAX31865_2WIRE, MAX31865_3WIRE, or MAX31865_4WIRE.
* @param zero_res The resistance of the RTD at 0°C, in ohms.
* @param ref_res The resistance of the reference resistor, in ohms.
* @param wire_res The resistance of the wire connecting the sensor to the RTD, in ohms.
*/
void MAX31865::begin(max31865_numwires_t wires, float zero, float ref) {
Rzero = zero;
Rref = ref;
void MAX31865::begin(max31865_numwires_t wires, const_float_t zero_res, const_float_t ref_res, const_float_t wire_res) {
resNormalizer = 100.0f / zero_res; // reciprocal of resistance, scaled by 100
refRes = ref_res;
wireRes = wire_res;
OUT_WRITE(_cs, HIGH);
pinMode(cselPin, OUTPUT);
digitalWrite(cselPin, HIGH);
if (_sclk != TERN(LARGE_PINMAP, -1UL, -1)) {
// Define pin modes for Software SPI
#ifdef MAX31865_DEBUG
SERIAL_ECHOLN("Initializing MAX31865 Software SPI");
#endif
OUT_WRITE(_sclk, LOW);
SET_OUTPUT(_mosi);
SET_INPUT(_miso);
}
if (sclkPin != TERN(LARGE_PINMAP, -1UL, 255))
softSpiInit(); // Define pin modes for Software SPI
else {
// Start and configure hardware SPI
#ifdef MAX31865_DEBUG
SERIAL_ECHOLN("Initializing MAX31865 Hardware SPI");
#endif
SPI.begin();
DEBUG_ECHOLNPGM("Init MAX31865 Hardware SPI");
SPI.begin(); // Start and configure hardware SPI
}
setWires(wires);
enableBias(false);
autoConvert(false);
clearFault();
initFixedFlags(wires);
#ifdef MAX31865_DEBUG_SPI
#ifndef LARGE_PINMAP
SERIAL_ECHOLNPGM(
"Regular begin call with _cs: ", _cs,
" _miso: ", _miso,
" _sclk: ", _sclk,
" _mosi: ", _mosi
);
#else
SERIAL_ECHOLNPGM(
"LARGE_PINMAP begin call with _cs: ", _cs,
" _miso: ", _miso,
" _sclk: ", _sclk,
" _mosi: ", _mosi
);
#endif // LARGE_PINMAP
DEBUG_ECHOLNPGM("MAX31865 Regs: CFG ", readRegister8(MAX31865_CONFIG_REG),
"|RTD ", readRegister16(MAX31865_RTDMSB_REG),
"|HTHRS ", readRegister16(MAX31865_HFAULTMSB_REG),
"|LTHRS ", readRegister16(MAX31865_LFAULTMSB_REG),
"|FLT ", readRegister8(MAX31865_FAULTSTAT_REG));
SERIAL_ECHOLNPGM("config: ", readRegister8(MAX31856_CONFIG_REG));
SERIAL_EOL();
#endif // MAX31865_DEBUG_SPI
// fault detection cycle seems to initialize the sensor better
runAutoFaultDetectionCycle(); // also initializes flags
if (lastFault)
SERIAL_ECHOLNPGM("MAX31865 init fault ", lastFault);
writeRegister16(MAX31865_HFAULTMSB_REG, 0xFFFF);
writeRegister16(MAX31865_LFAULTMSB_REG, 0);
#if ENABLED(MAX31865_USE_AUTO_MODE) // make a proper first read to initialize _lastRead
uint16_t rtd = readRegister16(MAX31865_RTDMSB_REG);
#if MAX31865_IGNORE_INITIAL_FAULTY_READS > 0
rtd = fixFault(rtd);
#endif
if (rtd & 1) {
lastRead = 0xFFFF; // some invalid value
lastFault = readRegister8(MAX31865_FAULTSTAT_REG);
clearFault(); // also clears the bias voltage flag, so no further action is required
DEBUG_ECHOLNPGM("MAX31865 read fault: ", rtd);
}
else {
DEBUG_ECHOLNPGM("RTD MSB:", (rtd >> 8), " RTD LSB:", (rtd & 0x00FF));
lastRead = rtd;
TERN_(MAX31865_USE_READ_ERROR_DETECTION, lastReadStamp = millis());
}
#else
enableBias();
DELAY_US(2000); // according to the datasheet, 10.5τ+1msec (see below)
oneShot();
DELAY_US(63000);
uint16_t rtd = readRegister16(MAX31865_RTDMSB_REG);
#if MAX31865_IGNORE_INITIAL_FAULTY_READS > 0
rtd = fixFault(rtd);
#endif
if (rtd & 1) {
lastRead = 0xFFFF; // some invalid value
lastFault = readRegister8(MAX31865_FAULTSTAT_REG);
clearFault(); // also clears the bias voltage flag, so no further action is required
DEBUG_ECHOLNPGM("MAX31865 read fault: ", rtd);
}
else {
DEBUG_ECHOLNPGM("RTD MSB:", (rtd >> 8), " RTD LSB:", (rtd & 0x00FF));
resetFlags();
lastRead = rtd;
nextEvent = SETUP_BIAS_VOLTAGE;
millis_t now = millis();
nextEventStamp = now + MAX31865_MIN_SAMPLING_TIME_MSEC;
TERN_(MAX31865_USE_READ_ERROR_DETECTION, lastReadStamp = now);
}
#endif // MAX31865_USE_AUTO_MODE
DEBUG_ECHOLNPGM(
TERN(LARGE_PINMAP, "LARGE_PINMAP", "Regular")
" begin call with cselPin: ", cselPin,
" misoPin: ", misoPin,
" sclkPin: ", sclkPin,
" mosiPin: ", mosiPin,
" config: ", readRegister8(MAX31865_CONFIG_REG)
);
}
/**
* Read the raw 8-bit FAULTSTAT register
* Return and clear the last fault value
*
* @return The raw unsigned 8-bit FAULT status register
* @return The raw unsigned 8-bit FAULT status register or spike fault
*/
uint8_t MAX31865::readFault() {
return readRegister8(MAX31856_FAULTSTAT_REG);
uint8_t r = lastFault;
lastFault = 0;
return r;
}
/**
* Clear all faults in FAULTSTAT.
* Clear last fault
*/
void MAX31865::clearFault() {
setConfig(MAX31856_CONFIG_FAULTSTAT, 1);
setConfig(MAX31865_CONFIG_FAULTSTAT, 1);
}
/**
* Whether we want to have continuous conversions (50/60 Hz)
*
* @param b If true, auto conversion is enabled
* Reset flags
*/
void MAX31865::autoConvert(bool b) {
setConfig(MAX31856_CONFIG_MODEAUTO, b);
}
/**
* Whether we want filter out 50Hz noise or 60Hz noise
*
* @param b If true, 50Hz noise is filtered, else 60Hz(default)
*/
void MAX31865::enable50HzFilter(bool b) {
setConfig(MAX31856_CONFIG_FILT50HZ, b);
void MAX31865::resetFlags() {
writeRegister8(MAX31865_CONFIG_REG, stdFlags);
}
/**
* Enable the bias voltage on the RTD sensor
*
* @param b If true bias is enabled, else disabled
*/
void MAX31865::enableBias(bool b) {
setConfig(MAX31856_CONFIG_BIAS, b);
// From the datasheet:
// Note that if VBIAS is off (to reduce supply current between conversions), any filter
// capacitors at the RTDIN inputs need to charge before an accurate conversion can be
// performed. Therefore, enable VBIAS and wait at least 10.5 time constants of the input
// RC network plus an additional 1ms before initiating the conversion.
if (b)
DELAY_US(11500); //11.5ms
void MAX31865::enableBias() {
setConfig(MAX31865_CONFIG_BIAS, 1);
}
/**
* Start a one-shot temperature reading.
*/
void MAX31865::oneShot() {
setConfig(MAX31856_CONFIG_1SHOT, 1);
setConfig(MAX31865_CONFIG_1SHOT | MAX31865_CONFIG_BIAS, 1);
}
// From the datasheet:
// Note that a single conversion requires approximately 52ms in 60Hz filter
// mode or 62.5ms in 50Hz filter mode to complete. 1-Shot is a self-clearing bit.
// TODO: switch this out depending on the filter mode.
DELAY_US(65000); // 65ms
void MAX31865::runAutoFaultDetectionCycle() {
writeRegister8(MAX31865_CONFIG_REG, (stdFlags & 0x11) | 0x84 ); // cfg reg = 100X010Xb
DELAY_US(600);
for (int i = 0; i < 10 && (readRegister8(MAX31865_CONFIG_REG) & 0xC) > 0; i++) DELAY_US(100); // Fault det completes when bits 2 and 3 are zero (or after 10 tries)
readFault();
clearFault();
}
/**
* How many wires we have in our RTD setup, can be MAX31865_2WIRE,
* MAX31865_3WIRE, or MAX31865_4WIRE
* Set a value in the configuration register.
*
* @param config 8-bit value for the config item
* @param enable whether to enable or disable the value
*/
void MAX31865::setConfig(uint8_t config, bool enable) {
uint8_t t = stdFlags;
if (enable)
t |= config;
else
t &= ~config;
writeRegister8(MAX31865_CONFIG_REG, t);
}
/**
* Initialize standard flags with flags that will not change during operation (Hz, polling mode and no. of wires)
*
* @param wires The number of wires in enum format
*/
void MAX31865::setWires(max31865_numwires_t wires) {
uint8_t t = readRegister8(MAX31856_CONFIG_REG);
void MAX31865::initFixedFlags(max31865_numwires_t wires) {
// set config-defined flags (same for all sensors)
stdFlags = TERN(MAX31865_50HZ_FILTER, MAX31865_CONFIG_FILT50HZ, MAX31865_CONFIG_FILT60HZ) |
TERN(MAX31865_USE_AUTO_MODE, MAX31865_CONFIG_MODEAUTO | MAX31865_CONFIG_BIAS, MAX31865_CONFIG_MODEOFF);
if (wires == MAX31865_3WIRE)
t |= MAX31856_CONFIG_3WIRE;
else // 2 or 4 wire
t &= ~MAX31856_CONFIG_3WIRE;
writeRegister8(MAX31856_CONFIG_REG, t);
stdFlags |= MAX31865_CONFIG_3WIRE; // 3 wire
else
stdFlags &= ~MAX31865_CONFIG_3WIRE; // 2 or 4 wire
}
#if MAX31865_IGNORE_INITIAL_FAULTY_READS > 0
inline uint16_t MAX31865::fixFault(uint16_t rtd) {
if (!ignore_faults || !(rtd & 1))
return rtd;
ignore_faults--;
clearFault();
DEBUG_ECHOLNPGM("MAX31865 ignoring fault ", (MAX31865_IGNORE_INITIAL_FAULTY_READS) - ignore_faults);
return rtd & ~1; // 0xFFFE
}
#endif
inline uint16_t MAX31865::readRawImmediate() {
uint16_t rtd = readRegister16(MAX31865_RTDMSB_REG);
DEBUG_ECHOLNPGM("MAX31865 RTD MSB:", (rtd >> 8), " LSB:", (rtd & 0x00FF));
#if MAX31865_IGNORE_INITIAL_FAULTY_READS > 0
rtd = fixFault(rtd);
#endif
if (rtd & 1) {
lastFault = readRegister8(MAX31865_FAULTSTAT_REG);
lastRead |= 1;
clearFault(); // also clears the bias voltage flag, so no further action is required
DEBUG_ECHOLNPGM("MAX31865 read fault: ", lastFault);
}
else {
TERN_(MAX31865_USE_READ_ERROR_DETECTION, const millis_t ms = millis());
if (TERN0(MAX31865_USE_READ_ERROR_DETECTION, ABS((int)(lastRead - rtd)) > 500 && PENDING(ms, lastReadStamp + 1000))) {
// If 2 readings within 1s differ too much (~20°C) it's a read error.
lastFault = 0x01;
lastRead |= 1;
DEBUG_ECHOLNPGM("MAX31865 read error: ", rtd);
}
else {
lastRead = rtd;
TERN_(MAX31865_USE_READ_ERROR_DETECTION, lastReadStamp = ms);
}
}
return rtd;
}
/**
@@ -283,33 +368,59 @@ void MAX31865::setWires(max31865_numwires_t wires) {
* @return The raw unsigned 16-bit register value with ERROR bit attached, NOT temperature!
*/
uint16_t MAX31865::readRaw() {
clearFault();
enableBias(true);
oneShot();
uint16_t rtd = readRegister16(MAX31856_RTDMSB_REG);
#if ENABLED(MAX31865_USE_AUTO_MODE)
readRawImmediate();
#else
const millis_t ms = millis();
if (PENDING(ms, nextEventStamp)) {
DEBUG_ECHOLNPGM("MAX31865 waiting for event ", nextEvent);
return lastRead;
}
switch (nextEvent) {
case SETUP_BIAS_VOLTAGE:
enableBias();
nextEventStamp = ms + 2; // wait at least 10.5*τ (τ = 100nF*430Ω max for PT100 / 10nF*4.3ΚΩ for PT1000 = 43μsec) + 1msec
nextEvent = SETUP_1_SHOT_MODE;
DEBUG_ECHOLNPGM("MAX31865 bias voltage enabled");
break;
case SETUP_1_SHOT_MODE:
oneShot();
nextEventStamp = ms + TERN(MAX31865_50HZ_FILTER, 63, 52); // wait at least 52msec for 60Hz (63msec for 50Hz) before reading RTD register
nextEvent = READ_RTD_REG;
DEBUG_ECHOLNPGM("MAX31865 1 shot mode enabled");
break;
case READ_RTD_REG:
if (!(readRawImmediate() & 1)) // if clearFault() was not invoked, need to clear the bias voltage and 1-shot flags
resetFlags();
nextEvent = SETUP_BIAS_VOLTAGE;
nextEventStamp = ms + (MAX31865_MIN_SAMPLING_TIME_MSEC); // next step should not occur within less than MAX31865_MIN_SAMPLING_TIME_MSEC from the last one
break;
}
#ifdef MAX31865_DEBUG
SERIAL_ECHOLNPGM("RTD MSB:", (rtd >> 8), " RTD LSB:", (rtd & 0x00FF));
#endif
// Disable the bias to lower power dissipation between reads.
// If the ref resistor heats up, the temperature reading will be skewed.
enableBias(false);
return rtd;
return lastRead;
}
/**
* Calculate and return the resistance value of the connected RTD.
*
* @param refResistor The value of the matching reference resistor, usually 430 or 4300
* @return The raw RTD resistance value, NOT temperature!
*/
float MAX31865::readResistance() {
// Strip the error bit (D0) and convert to a float ratio.
// less precise method: (readRaw() * Rref) >> 16
return (((readRaw() >> 1) / 32768.0f) * Rref);
// less precise method: (readRaw() * refRes) >> 16
return ((readRaw() * RECIPROCAL(65536.0f)) * refRes - wireRes);
}
/**
@@ -326,66 +437,77 @@ float MAX31865::temperature() {
*
* @return Temperature in C
*/
float MAX31865::temperature(uint16_t adcVal) {
return temperature(((adcVal) / 32768.0f) * Rref);
float MAX31865::temperature(const uint16_t adc_val) {
return temperature(((adc_val) * RECIPROCAL(32768.0f)) * refRes - wireRes);
}
/**
* Calculate the temperature in C from the RTD resistance.
* Uses the technique outlined in this PDF:
* http://www.analog.com/media/en/technical-documentation/application-notes/AN709_0.pdf
*
* @param Rrtd the resistance value in ohms
* @return the temperature in degC
* @param rtd_res the resistance value in ohms
* @return the temperature in °C
*/
float MAX31865::temperature(float Rrtd) {
float temp = (RTD_Z1 + sqrt(RTD_Z2 + (RTD_Z3 * Rrtd))) / RTD_Z4;
float MAX31865::temperature(float rtd_res) {
rtd_res *= resNormalizer; // normalize to 100 ohm
// Constants for calculating temperature from the measured RTD resistance.
// http://www.analog.com/media/en/technical-documentation/application-notes/AN709_0.pdf
constexpr float RTD_Z1 = -0.0039083,
RTD_Z2 = +1.758480889e-5,
RTD_Z3 = -2.31e-8,
RTD_Z4 = -1.155e-6;
// Callender-Van Dusen equation
float temp = (RTD_Z1 + sqrt(RTD_Z2 + (RTD_Z3 * rtd_res))) * RECIPROCAL(RTD_Z4);
// From the PDF...
//
// The previous equation is valid only for temperatures of 0°C and above.
// The equation for RRTD(t) that defines negative temperature behavior is a
// fourth-order polynomial (after expanding the third term) and is quite
// impractical to solve for a single expression of temperature as a function
// of resistance.
// of resistance. So here we use a Linear Approximation instead.
//
if (temp < 0) {
Rrtd = (Rrtd / Rzero) * 100; // normalize to 100 ohm
float rpoly = Rrtd;
#ifndef MAX31865_APPROX
#define MAX31865_APPROX 5
#endif
temp = -242.02 + (2.2228 * rpoly);
rpoly *= Rrtd; // square
temp += 2.5859e-3 * rpoly;
rpoly *= Rrtd; // ^3
temp -= 4.8260e-6 * rpoly;
rpoly *= Rrtd; // ^4
temp -= 2.8183e-8 * rpoly;
rpoly *= Rrtd; // ^5
temp += 1.5243e-10 * rpoly;
constexpr float RTD_C[] = {
#if MAX31865_APPROX == 5
-242.02, +2.2228, +2.5859e-3, -4.8260e-6, -2.8183e-8, +1.5243e-10
#elif MAX31865_APPROX == 4
-241.96, +2.2163, +2.8541e-3, -9.9121e-6, -1.7152e-8
#elif MAX31865_APPROX == 3
-242.09, +2.2276, +2.5178e-3, -5.8620e-6
#else
-242.97, +2.2838, +1.4727e-3
#endif
};
float rpoly = rtd_res;
temp = RTD_C[0];
temp += rpoly * RTD_C[1];
rpoly *= rtd_res; temp += rpoly * RTD_C[2];
if (MAX31865_APPROX >= 3) { rpoly *= rtd_res; temp += rpoly * RTD_C[3]; }
if (MAX31865_APPROX >= 4) { rpoly *= rtd_res; temp += rpoly * RTD_C[4]; }
if (MAX31865_APPROX >= 5) { rpoly *= rtd_res; temp += rpoly * RTD_C[5]; }
}
return temp;
}
//
// private:
//
/**
* Set a value in the configuration register.
*
* @param config 8-bit value for the config item
* @param enable whether to enable or disable the value
* MAX31865 SPI Timing constants
* See MAX31865 datasheet (https://datasheets.maximintegrated.com/en/ds/MAX31865.pdf)
* All timings in nsec, minimum values.
*/
void MAX31865::setConfig(uint8_t config, bool enable) {
uint8_t t = readRegister8(MAX31856_CONFIG_REG);
if (enable)
t |= config;
else
t &= ~config; // disable
writeRegister8(MAX31856_CONFIG_REG, t);
}
#define MAX31865_SPI_TIMING_TCC 400 // CS to SCLK setup
#define MAX31865_SPI_TIMING_TDC 35 // Data to SCLK setup
#define MAX31865_SPI_TIMING_TCL 100 // SCK half period
#define MAX31865_SPI_TIMING_TCCH 100 // SCK to CS hold
#define MAX31865_SPI_TIMING_TCWH 400 // CS inactive time (min)
/**
* Read a single byte from the specified register address.
@@ -396,7 +518,6 @@ void MAX31865::setConfig(uint8_t config, bool enable) {
uint8_t MAX31865::readRegister8(uint8_t addr) {
uint8_t ret = 0;
readRegisterN(addr, &ret, 1);
return ret;
}
@@ -407,14 +528,9 @@ uint8_t MAX31865::readRegister8(uint8_t addr) {
* @return both register contents as a single 16-bit int
*/
uint16_t MAX31865::readRegister16(uint8_t addr) {
uint8_t buffer[2] = {0, 0};
uint8_t buffer[2] = { 0 };
readRegisterN(addr, buffer, 2);
uint16_t ret = buffer[0];
ret <<= 8;
ret |= buffer[1];
return ret;
return uint16_t(buffer[0]) << 8 | buffer[1];
}
/**
@@ -425,27 +541,26 @@ uint16_t MAX31865::readRegister16(uint8_t addr) {
* @param n the number of bytes to read
*/
void MAX31865::readRegisterN(uint8_t addr, uint8_t buffer[], uint8_t n) {
addr &= 0x7F; // make sure top bit is not set
if (_sclk == TERN(LARGE_PINMAP, -1UL, -1))
SPI.beginTransaction(spiConfig);
else
WRITE(_sclk, LOW);
WRITE(_cs, LOW);
spixfer(addr);
addr &= 0x7F; // make sure top bit is not set
spiBeginTransaction();
spiTransfer(addr);
while (n--) {
buffer[0] = spixfer(0xFF);
#ifdef MAX31865_DEBUG_SPI
SERIAL_ECHOLNPGM("buffer read ", n, " data: ", buffer[0]);
#endif
buffer[0] = spiTransfer(0xFF);
buffer++;
}
if (_sclk == TERN(LARGE_PINMAP, -1UL, -1))
SPI.endTransaction();
spiEndTransaction();
}
WRITE(_cs, HIGH);
void MAX31865::writeRegister16(uint8_t addr, uint16_t data) {
spiBeginTransaction();
spiTransfer(addr | 0x80); // make sure top bit is set
spiTransfer(data >> 8);
spiTransfer(data & 0xFF);
spiEndTransaction();
}
/**
@@ -455,20 +570,33 @@ void MAX31865::readRegisterN(uint8_t addr, uint8_t buffer[], uint8_t n) {
* @param data the data to write
*/
void MAX31865::writeRegister8(uint8_t addr, uint8_t data) {
if (_sclk == TERN(LARGE_PINMAP, -1UL, -1))
spiBeginTransaction();
spiTransfer(addr | 0x80); // make sure top bit is set
spiTransfer(data);
spiEndTransaction();
}
void MAX31865::spiBeginTransaction() {
digitalWrite(sclkPin, LOW); // ensure CPOL0
DELAY_NS_VAR(MAX31865_SPI_TIMING_TCWH); // ensure minimum time of CS inactivity after previous operation
digitalWrite(cselPin, LOW);
DELAY_NS_VAR(MAX31865_SPI_TIMING_TCC);
if (sclkPin == TERN(LARGE_PINMAP, -1UL, 255))
SPI.beginTransaction(spiConfig);
else
WRITE(_sclk, LOW);
digitalWrite(sclkPin, HIGH);
}
WRITE(_cs, LOW);
spixfer(addr | 0x80); // make sure top bit is set
spixfer(data);
if (_sclk == TERN(LARGE_PINMAP, -1UL, -1))
void MAX31865::spiEndTransaction() {
if (sclkPin == TERN(LARGE_PINMAP, -1UL, 255))
SPI.endTransaction();
else
digitalWrite(sclkPin, LOW);
WRITE(_cs, HIGH);
DELAY_NS_VAR(MAX31865_SPI_TIMING_TCCH);
digitalWrite(cselPin, HIGH);
}
/**
@@ -480,21 +608,31 @@ void MAX31865::writeRegister8(uint8_t addr, uint8_t data) {
* @param x an 8-bit chunk of data to write
* @return the 8-bit response
*/
uint8_t MAX31865::spixfer(uint8_t x) {
if (_sclk == TERN(LARGE_PINMAP, -1UL, -1))
uint8_t MAX31865::spiTransfer(uint8_t x) {
if (sclkPin == TERN(LARGE_PINMAP, -1UL, 255))
return SPI.transfer(x);
uint8_t reply = 0;
for (int i = 7; i >= 0; i--) {
digitalWrite(mosiPin, x & _BV(i));
DELAY_NS_VAR(MAX31865_SPI_TIMING_TDC);
digitalWrite(sclkPin, LOW);
DELAY_NS_VAR(MAX31865_SPI_TIMING_TCL - MAX31865_SPI_TIMING_TDC);
reply <<= 1;
WRITE(_sclk, HIGH);
WRITE(_mosi, x & (1 << i));
WRITE(_sclk, LOW);
if (READ(_miso))
reply |= 1;
if (digitalRead(misoPin)) reply |= 1;
DELAY_NS_VAR(MAX31865_SPI_TIMING_TDC);
digitalWrite(sclkPin, HIGH);
DELAY_NS_VAR(MAX31865_SPI_TIMING_TCL - MAX31865_SPI_TIMING_TDC);
}
return reply;
}
void MAX31865::softSpiInit() {
DEBUG_ECHOLNPGM("Initializing MAX31865 Software SPI");
pinMode(sclkPin, OUTPUT);
digitalWrite(sclkPin, LOW);
pinMode(mosiPin, OUTPUT);
pinMode(misoPin, INPUT);
}
#endif // HAS_MAX31865 && !USE_ADAFRUIT_MAX31865