Files
Marlin-2-0-x-Anycubic-i3-ME…/Marlin/src/HAL/SAMD21/timers.cpp
2023-05-26 18:50:47 +02:00

218 lines
8.1 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2022 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* SAMD21 HAL developed by Bart Meijer (brupje)
* Based on SAMD51 HAL by Giuliano Zaro (AKA GMagician)
*/
#ifdef __SAMD21__
// --------------------------------------------------------------------------
// Includes
// --------------------------------------------------------------------------
#include "../../inc/MarlinConfig.h"
#include "ServoTimers.h" // for SERVO_TC
// --------------------------------------------------------------------------
// Local defines
// --------------------------------------------------------------------------
#define NUM_HARDWARE_TIMERS 9
// --------------------------------------------------------------------------
// Private Variables
// --------------------------------------------------------------------------
const tTimerConfig timer_config[NUM_HARDWARE_TIMERS] = {
{ {.pTcc=TCC0}, TimerType::tcc, TCC0_IRQn, TC_PRIORITY(0) }, // 0 - stepper (assigned priority 2)
{ {.pTcc=TCC1}, TimerType::tcc, TCC1_IRQn, TC_PRIORITY(1) }, // 1 - stepper (needed by 32 bit timers)
{ {.pTcc=TCC2}, TimerType::tcc, TCC2_IRQn, 5 }, // 2 - tone (reserved by framework and fixed assigned priority 5)
{ {.pTc=TC3}, TimerType::tc, TC3_IRQn, TC_PRIORITY(3) }, // 3 - servo (assigned priority 1)
{ {.pTc=TC4}, TimerType::tc, TC4_IRQn, TC_PRIORITY(4) }, // 4 - software serial (no interrupts used)
{ {.pTc=TC5}, TimerType::tc, TC5_IRQn, TC_PRIORITY(5) },
{ {.pTc=TC6}, TimerType::tc, TC6_IRQn, TC_PRIORITY(6) },
{ {.pTc=TC7}, TimerType::tc, TC7_IRQn, TC_PRIORITY(7) },
{ {.pRtc=RTC}, TimerType::rtc, RTC_IRQn, TC_PRIORITY(8) } // 8 - temperature (assigned priority 6)
};
// --------------------------------------------------------------------------
// Private functions
// --------------------------------------------------------------------------
FORCE_INLINE void Disable_Irq(IRQn_Type irq) {
NVIC_DisableIRQ(irq);
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
__DSB();
__ISB();
}
static bool tcIsSyncing(Tc * tc) {
return tc->COUNT32.STATUS.reg & TC_STATUS_SYNCBUSY;
}
static void tcReset( Tc * tc) {
tc->COUNT32.CTRLA.reg = TC_CTRLA_SWRST;
while (tcIsSyncing(tc)) {}
while (tc->COUNT32.CTRLA.bit.SWRST) {}
}
// --------------------------------------------------------------------------
// Public functions
// --------------------------------------------------------------------------
void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) {
IRQn_Type irq = timer_config[timer_num].IRQ_Id;
// Disable interrupt, just in case it was already enabled
NVIC_DisableIRQ(irq);
NVIC_ClearPendingIRQ(irq);
if (timer_num == MF_TIMER_RTC) {
// https://github.com/arduino-libraries/RTCZero
Rtc * const rtc = timer_config[timer_num].pRtc;
PM->APBAMASK.reg |= PM_APBAMASK_RTC;
GCLK->CLKCTRL.reg = (uint32_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK4 | (RTC_GCLK_ID << GCLK_CLKCTRL_ID_Pos)));
while (GCLK->STATUS.bit.SYNCBUSY) {}
GCLK->GENCTRL.reg = (GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_OSCULP32K | GCLK_GENCTRL_ID(4) | GCLK_GENCTRL_DIVSEL );
while (GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY) {}
GCLK->GENDIV.reg = GCLK_GENDIV_ID(4);
GCLK->GENDIV.bit.DIV=4;
while (GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY) {}
// Disable timer interrupt
rtc->MODE0.INTENCLR.reg = RTC_MODE0_INTENCLR_CMP0;
SYNC(rtc->MODE0.STATUS.bit.SYNCBUSY);
while(rtc->MODE0.STATUS.bit.SYNCBUSY) {}
// Stop timer, just in case, to be able to reconfigure it
rtc->MODE0.CTRL.reg =
RTC_MODE0_CTRL_MODE_COUNT32 | // Mode 0 = 32-bits counter
RTC_MODE0_CTRL_PRESCALER_DIV1024; // Divisor = 1024
while(rtc->MODE0.STATUS.bit.SYNCBUSY) {}
// Mode, reset counter on match
rtc->MODE0.CTRL.reg = RTC_MODE0_CTRL_MODE_COUNT32 | RTC_MODE0_CTRL_MATCHCLR;
// Set compare value
rtc->MODE0.COMP[0].reg = (32768 + frequency / 2) / frequency;
SYNC(rtc->MODE0.STATUS.bit.SYNCBUSY);
// Enable interrupt on compare
rtc->MODE0.INTFLAG.reg = RTC_MODE0_INTFLAG_CMP0; // reset pending interrupt
rtc->MODE0.INTENSET.reg = RTC_MODE0_INTENSET_CMP0; // enable compare 0 interrupt
// And start timer
rtc->MODE0.CTRL.bit.ENABLE = true;
SYNC(rtc->MODE0.STATUS.bit.SYNCBUSY);
}
else if (timer_config[timer_num].type==TimerType::tcc) {
Tcc * const tc = timer_config[timer_num].pTcc;
PM->APBCMASK.reg |= PM_APBCMASK_TCC0;
GCLK->CLKCTRL.reg =(GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_ID(TCC0_GCLK_ID));
SYNC (GCLK->STATUS.bit.SYNCBUSY);
tc->CTRLA.reg = TCC_CTRLA_SWRST;
SYNC (tc->SYNCBUSY.reg & TCC_SYNCBUSY_SWRST) {}
SYNC (tc->CTRLA.bit.SWRST);
tc->CTRLA.reg &= ~(TCC_CTRLA_ENABLE); // disable TC module
tc->CTRLA.reg |= TCC_WAVE_WAVEGEN_MFRQ;
tc->CTRLA.reg |= TCC_CTRLA_PRESCALER_DIV2;
tc->CC[0].reg = (HAL_TIMER_RATE) / frequency;
tc->INTENSET.reg = TCC_INTFLAG_MC0;
tc->CTRLA.reg |= TCC_CTRLA_ENABLE;
tc->INTFLAG.reg = 0xFF;
SYNC ( tc->STATUS.reg & TC_STATUS_SYNCBUSY);
}
else {
Tc * const tc = timer_config[timer_num].pTc;
// Disable timer interrupt
tc->COUNT32.INTENCLR.reg = TC_INTENCLR_OVF; // disable overflow interrupt
// TCn clock setup
GCLK->CLKCTRL.reg = (uint16_t) (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | GCLK_CLKCTRL_ID(GCM_TC4_TC5)) ;
SYNC (GCLK->STATUS.bit.SYNCBUSY);
tcReset(tc); // reset TC
// Set Timer counter 5 Mode to 16 bits, it will become a 16bit counter ('mode1' in the datasheet)
tc->COUNT32.CTRLA.reg |= TC_CTRLA_MODE_COUNT32;
// Set TC waveform generation mode to 'match frequency'
tc->COUNT32.CTRLA.reg |= TC_CTRLA_WAVEGEN_MFRQ;
//set prescaler
//the clock normally counts at the GCLK_TC frequency, but we can set it to divide that frequency to slow it down
//you can use different prescaler divisons here like TC_CTRLA_PRESCALER_DIV1 to get a different range
tc->COUNT32.CTRLA.reg |= TC_CTRLA_PRESCALER_DIV1 | TC_CTRLA_ENABLE; //it will divide GCLK_TC frequency by 1024
//set the compare-capture register.
//The counter will count up to this value (it's a 16bit counter so we use uint16_t)
//this is how we fine-tune the frequency, make it count to a lower or higher value
//system clock should be 1MHz (8MHz/8) at Reset by default
tc->COUNT32.CC[0].reg = (uint16_t) (HAL_TIMER_RATE / frequency);
while (tcIsSyncing(tc)) {}
// Enable the TC interrupt request
tc->COUNT32.INTENSET.bit.MC0 = 1;
while (tcIsSyncing(tc)) {}
}
NVIC_SetPriority(irq, timer_config[timer_num].priority);
NVIC_EnableIRQ(irq);
}
void HAL_timer_enable_interrupt(const uint8_t timer_num) {
const IRQn_Type irq = timer_config[timer_num].IRQ_Id;
NVIC_EnableIRQ(irq);
}
void HAL_timer_disable_interrupt(const uint8_t timer_num) {
const IRQn_Type irq = timer_config[timer_num].IRQ_Id;
Disable_Irq(irq);
}
// missing from CMSIS: Check if interrupt is enabled or not
static bool NVIC_GetEnabledIRQ(IRQn_Type IRQn) {
return TEST(NVIC->ISER[uint32_t(IRQn) >> 5], uint32_t(IRQn) & 0x1F);
}
bool HAL_timer_interrupt_enabled(const uint8_t timer_num) {
const IRQn_Type irq = timer_config[timer_num].IRQ_Id;
return NVIC_GetEnabledIRQ(irq);
}
#endif // __SAMD21__